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Abstract

Background: Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide
physiological actions. Chronic supplementation of taurine in drinking water to mice increases brain excitability
mainly through alterations in the inhibitory GABAergic system. These changes include elevated expression level of
glutamic acid decarboxylase (GAD) and increased levels of GABA. Additionally we reported that GABAA receptors
were down regulated with chronic administration of taurine. Here, we investigated pharmacologically the
functional significance of decreased / or change in subunit composition of the GABAA receptors by determining
the threshold for picrotoxin-induced seizures. Picrotoxin, an antagonist of GABAA receptors that blocks the
channels while in the open state, binds within the pore of the channel between the b2 and b3 subunits. These are
the same subunits to which GABA and presumably taurine binds.

Methods: Two-month-old male FVB/NJ mice were subcutaneously injected with picrotoxin (5 mg kg-1) and observed
for a) latency until seizures began, b) duration of seizures, and c) frequency of seizures. For taurine treatment, mice were
either fed taurine in drinking water (0.05%) or injected (43 mg/kg) 15 min prior to picrotoxin injection.

Results: We found that taurine-fed mice are resistant to picrotoxin-induced seizures when compared to age-
matched controls, as measured by increased latency to seizure, decreased occurrence of seizures and reduced
mortality rate. In the picrotoxin-treated animals, latency and duration were significantly shorter than in taurine-
treated animas. Injection of taurine 15 min before picrotoxin significantly delayed seizure onset, as did chronic
administration of taurine in the diet. Further, taurine treatment significantly increased survival rates compared to
the picrotoxin-treated mice.

Conclusions: We suggest that the elevated threshold for picrotoxin-induced seizures in taurine-fed mice is due to
the reduced binding sites available for picrotoxin binding due to the reduced expression of the beta subunits of
the GABAA receptor. The delayed effects of picrotoxin after acute taurine injection may indicate that the two
molecules are competing for the same binding site on the GABAA receptor. Thus, taurine-fed mice have a
functional alteration in the GABAergic system. These include: increased GAD expression, increased GABA levels, and
changes in subunit composition of the GABAA receptors. Such a finding is relevant in conditions where agonists of
GABAA receptors, such as anesthetics, are administered.

Background
Maintenance of the level of excitability of neurons in the
central nervous system is essential to maintain homeo-
stasis. This balance is achieved through the regulation of

excitatory and inhibitory neurotransmitters. Any change
in this balance can lead to hyperexcitable cells and sub-
sequently to seizures. Possible mechanisms that may
contribute to hyperexcitability include changes in ion
homeostasis, ion pumps, hormones, and changes in
levels/efficiency of neurotransmitters. Of these neuro-
transmitters, the regulation of neuron excitability by
g-aminobutyric acid (GABA), the predominant
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inhibitory neurotransmitter, is especially required to
prevent hyperexcitability, and thus prevent seizures. Epi-
leptogenicity is characterized by chronic hypersensitivity
to sensory stimuli and thus is dependent upon the
amount of hyperexcitability expressed by neurons. In a
homeostatic brain, the GABAergic system plays an inte-
gral role in lowering the threshold required for an exci-
tatory stimulus of neurons. GABA, released from
presynaptic neurons, binds to the ionotropic GABAA

receptor, allowing chloride influx and resulting in the
hyperpolarization of the postsynaptic neuron. Any per-
turbation of the GABAergic system, therefore, could
contribute to excitability of the neuron and seizure
induction.
Synthesis of GABA by glutamic acid decarboxylase

(GAD) is critical for maintenance of GABA-mediated
inhibition and regulating levels of excitability [1,2]. GAD
exists in two isoforms, GAD65 and GAD67, both
encoded by different genes [3]. Both enzymes require
the coenzyme pyridoxal phosphate, with GAD65 having
a more significant requirement [2,4] for regulation of
activity. GAD65 appears to be an apoenzyme (lacking
the coenzyme), but once the coenzyme is present, exhi-
bits a significantly higher enzymatic activity than
GAD67 [5]. GAD67 exists mainly as a holoenzyme in
the cytoplasm [5]; regulation of this enzyme appears to
be more associated with gene-level expression [2]. There
is also abundant evidence that GAD65 expression can
also be affected at the gene-level [3,6,7].
As GAD is the rate-limiting enzyme for GABA synth-

esis, perturbation of GAD activity would lead to GABA
depletion and, subsequently, to an increase in seizure
susceptibility. Isoniazid, a widely used drug to combat
tuberculosis, is also and effective GAD inhibitor, leading
to the rapid depletion of GABA [8-10]. Large doses of
isoniazid cause severe fatal seizures in experimental ani-
mals [11]. We have previously reported that the thresh-
old dose for induction of seizures in mice is 200 mg kg-1

[12], and that doses higher than 200 mg kg-1 induce sei-
zures of short duration and latency. Isoniazid is not
GAD-specific, but also inhibits other enzymes required
pyridoxal phosphate as a coenzyme. When mice are
administered pyridoxal phosphate 15 min prior to treat-
ment with isoniazid, we found that the threshold shifted
to 250 mg kg-1 and that doses as high as 350 mg kg-1

delayed seizure onset and severity [12]. The data suggest
that isoniazid likely competes for the pyridoxal phos-
phate-binding site on GAD.
Seizures can be induced by the administration of kia-

nic acid (KA), a glutamate analogue. Treatment with KA
can manifest in the GABAergic system through loss of a
subpopulation of GAD-positive neurons, leading to lim-
bic seizures [13]. Limbic seizures mostly affect the hip-
pocampus, dentate gyrus, and entorhinal cortex [14,15].

Previously, we have reported that the threshold dose for
KA is 10 mg kg-1[12], with doses at or above 30 mg kg-1

inducing fatal seizures. Taken together, both isoniazid
and KA appear to negatively regulate the GABAergic
system, either directly through hyperexcitability or indir-
ectly through depletion of GABA), resulting in seizures.
We are interested, therefore, in mechanisms by which

we may positively influence the GABAergic system to
form a compensatory mechanism by which seizure
onset and severity may be reduced. To this end, we
have found that taurine may be beneficial and may work
through the GABAergic system via the GABAA receptor.
We have previously reported that chronic supplementa-
tion of taurine in drinking water to mice increases brain
excitability mainly through alterations in the inhibitory
GABAergic system [12-15]. Taurine, 2-aminoethanesul-
fonic acid, concentrations are high in the CNS [16],
especially in the neonate [17-19], but drop during devel-
opment. Others and our laboratories have demonstrated
a relationship between taurine and the GABAergic sys-
tem. For example, there are brain region-specific levels
of GAD and that GAD expression (both isoforms) is ele-
vated in mice chronically fed taurine [12,18]. Taurine is
an agonist of the GABAA receptor [20,21] and activates
chloride influx into postsynaptic neurons via this recep-
tor [19]. Chronic administration of taurine to mice leads
to a reduction in the b2/b3 GABAA subunits [19]. Using
a sub-threshold dose of isoniazid coupled with sub-
threshold dose of KA, we have demonstrated that mice
undergo seizures with a short latency and duration, and
this combination was lethal in a majority of animals
[12]. In mice chronically administered taurine prior to
isoniazid/KA treatment, we demonstrated that taurine
was effective in reducing the severity of seizures as
latency was significantly increased and mortality signifi-
cantly decreased [12].
Together, our data suggest that taurine interacts

directly with the GABAergic system, likely via the
GABAA receptor. To further test this hypothesis, here we
used a potent GABAA antagonist, picrotoxin. Picrotoxin
binds to the b2/b3 subunits of the GABAA receptor, the
same subunits demonstrated to be reduced by chronic
exposure to taurine. Here we describe the efficacy of
taurine in decreasing picrotoxin-induced seizures.

Methods
Pharmacological agents
Picrotoxin was dissolved in isotonic saline at 3 mg/ml.
All mice used in this study were two-month-old FVB/NJ
males and all injections were subcutaneous. For taurine-
fed mice, taurine was dissolved in water at 0.05%, and
this solution was made available to the mice in place of
drinking water for 4 weeks beginning at 4 weeks of age.
For taurine-injected mice, mice were administered
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43 mg kg-1 subcutaneous 15 min prior to picrotoxin
treatment. All mice were housed in groups of three in a
pathogen-free room maintained on a 12 hr light/dark
cycle and given food and water ad libitum. All proce-
dures were approved by the Institutional Animal Care
and Use Committee of the College of Staten Island/
CUNY and were in conformity with National Institutes
of Health Guidelines.

Behavioral analysis
Animals were put into individual cages the day before
the experiments. After treatment, animals were trans-
ferred to clear animal cages and videotaped for 4 h. Sei-
zures were scored by two independent observers who
were unaware of the treatment. The observers were
asked to look for the following stereotypical behaviors:
motionless stare, rearing and falling, clonic convulsions,
tonic-clonic seizures (status epilepticus) and death. The
occurrence of these behaviors, the time from injection
to initiation of the behavior (latency) and the duration
of the convulsions are measures of seizure severity. Sal-
ine-injected animals did not show any seizure behavior.

Results
Behavioral analysis
Following picrotoxin injection, control mice exhibited
a short latency period to the onset of seizures (Figure
1). The duration of these seizures were short, and in
two thirds of the control mice, seizures were fatal. In
the taurine-injected mice, the latency was significantly
longer (P<0.001) as were the durations (Figure 1).
Further, mortality rate in these mice were also signifi-
cantly less (12% p<0.001), suggesting that taurine was
protective of the effects of picrotoxin via the GABAA

channel. Similarly, chronic administration of taurine
also significantly reduced the effects of picrotoxin, as
the latency and duration of seizures were also longer
(P<0.05) (Figure 1). Chronic administration also signif-
icantly improved survivability compared to controls.
The data suggests that taurine may act either at
the picrotoxin-binding site or at the GABA binding
site of the GABAA receptor. Alternatively, taurine
could mediate it protective effects against picrotoxin-
induced seizures through activation of taurine recep-
tor [22].

Figure 1 Latency to seizures Two-month-old male mice treated with 5 mg kg-1 picrotoxin presented with short latency periods (control) that
were also of short duration. Seizures were nearly always fatal (66%). Treatment with taurine significantly increased latency and duration, whether
route of administration was injection 15 min prior to picrotoxin injection (Tau-Inj) or chronic feeding of taurine (Tau-Fed). In both cases, taurine
significantly improved survivability (P<0.05).
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Discussion
Picrotoxin is a potent antagonist of the GABAA receptor.
Binding of picrotoxin to b2/b3 subunits of the receptor
effectively blocks the chloride channel, resulting in a
post-synaptic neuron that is more easily excitable and
prone to hyperexcitability. As such, picrotoxin-induced
toxicity is epileptogenic [10,23-25]. There is compelling
evidence that taurine interacts with the GABAergic sys-
tem via the GABAA receptor [19,25-30]. Taurine as also
been shown to activate a taurine receptor [22], but the
molecular identity of this receptor has not been fully
characterized. Chronic taurine administration results in
improved chloride conductance while selective depres-
sion of b2/b3 subunits expression occurs [19], the same
subunits to which picrotoxin binds [31]. Taurine there-
fore maintains the integrity of the chloride channel via
binding to the receptor. The site to which taurine binds,
however, remains elusive. The data here suggests that
taurine may bind to the GABA binding site of the recep-
tor, keeping the channel open. In both taurine-fed and
injected mice, hyperexcitability was diminished, as
demonstrated by the longer latency and duration of sei-
zures. If taurine binds to the GABA binding site, the
receptor would remain open as long as taurine was pre-
sent. This scenario could explain the acute taurine
administration data: taurine binds to the GABAA recep-
tor and allows the cells to become hyperpolarized and
thus resistant to picrotoxin-induced seizures. For the
chronically fed taurine animals, the taurine would most
likely be sequestered by neurons, forming intracellular
pools of taurine that would primarily be used for osmore-
gulation of the neurons [32-36]. In the taurine-fed mice,
the administration of picrotoxin could signal a release of
intracellular stores of taurine, which could bind to the
GABA binding site and open the channels. An alternative
explanation of these findings would be the activation of
the taurine receptor [22] or a synergistic effect between
the GABAA and the taurine receptor could explain the
selective resistance to mice to picrotoxin-induced
seizures.

Conclusions
Taurine administration may interact with the GABAer-
gic system at two points. First, taurine may interact at
the level of the enzyme GAD. Chronic administration of
taurine to mice leads to an increase in GAD levels (both
isoforms) in GABAergic neurons. This in turn leads to
an increased expression in GABA in presynaptic neu-
rons. Second, taurine interacts at the level of the
GABAA receptor. Binding of taurine to the receptor
increases chloride influx into the cell, hyperpolarizing
the postsynaptic neuron to reduce excitability. Chronic
administration of taurine also influences the expression

of the b2/b3 subunits of the GABAA receptor, which in
turn may influence the expression of GAD in the presy-
naptic neuron via a feedback mechanism. The data from
this and previous studies provide strong evidence for
the neuroprotective role of taurine in the GABAergic
system.
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