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Abstract 

The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understand‑
ing of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. 
Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates 
to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumula‑
tion of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, lead‑
ing to overall decline in quality of intracellular components. Such deregulation has been implicated in a wide range 
of pathological conditions such as cancer, cardiovascular, inflammatory, and neurological disorders. This review 
explores the role of long non‑coding RNAs (lncRNAs) as modulators of transcriptional and post‑transcriptional gene 
expression, regulating diverse physiological process like proliferation, development, immunity, and metabolism. 
Moreover, lncRNAs are known to sequester autophagy related microRNAs by functioning as competing endogenous 
RNAs (ceRNAs), thereby regulating this vital process. In the present review, we delineate the multitiered regulation 
of lncRNAs in the autophagic dysfunction of various pathological diseases. Moreover, by highlighting recent findings 
on the modulation of lncRNAs in different stages of autophagy, and the emerging clinical landscape that recognizes 
lncRNAs in disease diagnosis and therapy, this review highlights the potential of lncRNAs as biomarkers and thera‑
peutic targets in clinical settings of different stages of autophagic process by regulating ATG and its target genes. 
This focus on lncRNAs could lead to breakthroughs in personalized medicine, offering new avenues for diagnosis 
and treatment of complex diseases.
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Graphical Abstract

Introduction
Chronic diseases have become the leading challenge 
of the healthcare sector with increasing mortality and 
morbidity worldwide. The treatment of chronic diseases 
poses unique challenges due to their long-term nature, 
complex etiology, and varying disease progression among 
individuals [1–5]. The management of chronic diseases 
requires a comprehensive and multifaceted approach to 
address the diverse needs of patients [1, 6–11]. Hence, it 
is crucial to understand the causative factors underlying 
these multifactorial diseases to develop safe, and effica-
cious treatment strategies.

Autophagy, a fundamental biological process is 
involved in maintenance of cellular homeostasis by recy-
cling impaired organelles, aggregates of proteins, and 

intracellular pathogens [12]. It is a dynamic, regulated 
cellular process that involves the degradation of cellu-
lar components within specialized compartments called 
autophagosomes [13]. The word “autophagy” originates 
from the Greek texts “auto” (self ) and “phagy” (eat-
ing), relating the phenomenon of digestion of impaired 
components by the cells [14]. With the increase in the 
understanding of the autophagic process and the under-
lying mechanisms involved in it, autophagy have been 
stratified into different types such as macroautophagy, 
microautophagy, and chaperone-mediated autophagy 
(CMA) based on the cargo content and the biogen-
esis mechanism. Macroautophagy, often referred to as 
autophagy, has been the most significantly studied type 
where the formation of autophagosomes take place that 
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engulf damaged organelles, proteins, and other cytoplas-
mic material. Further, fusion of autophagosomes with 
lysosomes forms the autolysosomes, where the enclosed 
contents are processed by lysosomal enzymes, releas-
ing basic building blocks that can be reused by the cell 
[15, 16]. Microautophagy is a distinct form of autophagy 
characterized by the direct engulfment of cytoplasmic 
material by invagination or protrusion of the lysoso-
mal membrane. This process allows for the selective or 
non-selective uptake of proteins or organelles directly 
into the lysosome for degradation (Fig. 1) [17]. Microau-
tophagy is considered a constitutive process that occurs 
continuously and contributes to the turnover of cellu-
lar components. Although less understood compared 
to macroautophagy, microautophagy is emerging as an 
important mechanism for protein quality control and 
organelle homeostasis [13, 18]. On the other hand, CMA 
is a selective form of autophagy that targets and degrades 
specific proteins (Fig. 1). In this process of CMA, it rec-
ognizes specific amino acid motifs in target proteins by 
chaperones present in the cytosol. Then, chaperones 
along with the target proteins are delivered to the lyso-
some for degradation [19].

Accumulating evidence implicates the deregulation of 
autophagic process in various chronic diseases, including 
cancer, neurodegenerative disorders, cardiovascular dis-
eases, and inflammatory conditions [20]. Autophagy dys-
function has been linked in the initiation and progression 
of various neurodegenerative disorders such as Alzhei-
mer’s, Parkinson’s, and Huntington’s disease. There has 
been reports where build-up of misfolded proteins and 
impaired clearance mechanisms are responsible for the 
formation of protein aggregates, contributing to neuronal 
toxicity and cell death [21, 22]. Enhancing autophagy 
has shown therapeutic potential in mitigating neurode-
generative pathology in various experimental models. In 
cancer, autophagy has a dual role, acting both as an onco-
genic and tumor suppressor mechanism. In the initial 
stages of tumorigenesis, autophagy prevents the accumu-
lation of damaged components and genomic instability, 
acting as a tumor suppressor [23–25]. However, in estab-
lished tumors, autophagy enables cancer cell survival 
under nutrient-deprived conditions and promotes resist-
ance to therapy [26].

Long non-coding RNAs (lncRNAs) are a varied class 
of non-coding RNA molecules with the absence of pro-
tein-coding elements but play important roles in gene 

Fig. 1 Selective/non‑selective uptake of proteins or organelles into the lysosome for degradation through CMA, Microautophagy, 
and Macroautophagy. This figure illustrates the mechanisms by which proteins and organelles are selectively or non‑selectively transported 
to the lysosome for degradation. CMA involves the selective uptake of soluble cytosolic proteins into the lysosome, facilitated by specific 
chaperones that recognize and bind to target proteins containing a KFERQ‑like motif. Microautophagy refers to the direct engulfment of small 
portions of cytoplasm or organelles by the lysosomal membrane, leading to the internalization and degradation of the cargo. Macroautophagy, 
involves the formation of a double‑membraned vesicle called the autophagosome, which engulfs larger cellular components before fusing 
with the lysosome for degradation



Page 4 of 32Kumar et al. Journal of Biomedical Science          (2024) 31:105 

regulation and cellular processes [27, 28]. Although 
initially considered as “transcriptional noise,” recent 
research has unraveled their vital functions in diverse bio-
logical processes, such as regulation of gene expression, 
chromatin remodeling, and post-transcriptional modifi-
cations. In recent years, emerging evidence has suggested 
that lncRNAs have a substantial impact on autophagy, 
a cellular process essential for maintaining cellular 
homeostasis and the clearance of damaged organelles 
and proteins [29]. Several lncRNAs have been identified 
as direct regulators of autophagy [30]. For example, the 
lncRNA MEG3 promoted autophagy by interacting with 
the autophagy-related gene 5 (ATG5) and facilitating the 
formation of autophagosomes [31]. Conversely, lncRNA 
BACE1-AS inhibit autophagy by sequestering miRNAs 
and preventing the degradation of protein involved in 
amyloid-beta production and Alzheimer’s disease patho-
genesis [32]. Some lncRNAs exert their influence on 
transcriptional activity of autophagy by modulating the 
expression of key genes related to autophagy [33–38]. 
The lncRNA HOTAIR promoted autophagy by binding to 
the transcription factor E2F1 and facilitating its recruit-
ment to the promoter areas of autophagy-related genes. 
This interaction enhances autophagy induction and con-
tributes to cellular homeostasis [39]. This review explores 
the concept of lncRNAs modulating autophagy and its 
significance in the pathophysiology of chronic diseases.

LncRNAs as regulators of autophagic process
Autophagy is an intricate, evolutionary conserved and 
agile process eliminating misfolded proteins, damaged 
or aged organelles and mutated proteins, that contains 
three types such as microautophagy, macroautophagy 
and chaperone-mediated autophagy, where the macroau-
tophagy has received significant attention and thorough 
investigation [40]. Here we have discussed the promi-
nence of various lncRNAs regulating the different stages 
of autophagy by modulating the ATG and its downstream 
target genes (Table 1).

LncRNAs in initiation process of autophagy
In the course of cellular stimulus such as nutritional star-
vation, depletion of amino acids, oxidative stress etc., 
the phosphorylation of AMPK inhibits mTOR leading 
to the initiation of the autophagic process incited by the 
activation of ATG1/ULK1/2 complex [218–220]. ATG1/
ULK1/2 forms complex with ATG13, FIP200/ATG17, 
ATG29, and ATG31 to form a scaffold of PAS complex. 
Then ATG13, and FIP200 interacts with ULK1 targeting 
to PAS followed by PI3K complex, ATG9A system, ATG-
12 conjugation system and LC3-conjugation in a pecking 

manner involved in the formation of autophagosome, is 
then transferred to omegasomes (Fig. 2) [221, 222].

Zhou and his group reported the decreased H19 
lncRNA expression when treated with high glucose 
levels inhibited PI3K/AKT/mTOR signaling thereby 
to the transcriptional activation of DIRAS3 and the 
H19 knockdown resulted in upregulation of ATG7 
and Beclin-1 levels [223]. Further, lncRNA H19 pro-
moted autophagy through the regulation of the DUSP5/
ERK1/2 axis [224]. It has been reported that exogenous 
expression of lncRNA Ad5-AlncRNA resulted in activat-
ing autophagy by downregulating various microRNAs 
(miRNAs) including miR-217, 216a, 494, and 21 that 
targets PTEN inhibiting the AKT/mTOR pathway [225]. 
Besides, lncRNA AK156230 represses autophagy by 
downregulating the ULK2, ATG7, and ATG16/2 expres-
sion in mouse embryonic fibroblast cells [226]. Moreover, 
ectopic expression of lncRNA MALAT1 under oxygen–
glucose deprivation/reoxygenation condition resulted 
in decreased cell death by increasing LC3-II and ULK2 
expression as well as by decreasing the p62, and LC3-1 
expression along with sponging miR-26b facilitating the 
brain microvascular endothelial cell autophagy and sur-
vival [227]. Further, upregulation of maternally expressed 
gene 3 (MEG3) triggered autophagy and suppressed 
tumorigenesis by unmediated interaction with the ATG3 
protein, thereby impeding its degradation in ovarian 
carcinoma [228]. Furthermore, lncRNA PTEN pseudo-
gene-1 (PTENP1) overexpression activated autophagy by 
increasing the PTEN expression, repressing the PI3K/Akt 
pathway along with sequestration of the miRNAs includ-
ing miR-17 and miR-20a that further increases the levels 
of ATG1, ULK1, and SQSTM1 proteins [229].

LncRNAs in phagophore nucleation process of autophagy
After transferring to omegasomes, ATG1/ULK1 complex 
forms phosphatidylinositol 3-phosphate (PI3P) by induc-
ing PI3K complex consisting of Vps15, Vps34, Beclin 1, 
and Barkor, that recruits double FYVE-containing pro-
tein 1 (DFCP1) stimulating the omegasome formation 
[230–232]. It has been reported that Bcl-2 and Rubicon 
are negatively regulating autophagy by disrupting the 
class III PI3K complex (Fig. 3) [233, 234].

The lncRNA regulator of reprogramming (linc-ROR) 
can induces the gemcitabine and tamoxifen resistance 
and also triggers autophagy by increasing the levels of 
Beclin-1, however the mechanism between the linc-ROR 
and Beclin-1 needs to be further explored [235, 236]. A 
higher expression of the LncRNA loc146880 activated 
autophagy when treated with PM2.5 and promoted inva-
sion and migration of lung cancer cells (Fig.  3) [237]. 
Also, lncRNA AC023115.3 increased glycogen synthase 
kinase-3 (GSK3) expression by downregulating miR-26a 
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Table 1 Autophagy modulating lncRNAs and their effect in different chronic diseases

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

Cancers

 Acute Myeloid Leukemia LINC00265 b miR‑485‑5p ↓LC3‑II/LC3‑I ratio, ↓Beclin‑1, 
↑p62

↓IRF2, ↑Apoptosis [41]

UCA1 a miR‑96‑5p ↑ATG7, ↑Beclin‑1 ↑Proliferation [42]

DANCR a miR‑874‑3p ↑ATG16L1, ↑LC3‑II, ↓SQSTM1/
p62

↑Cytarabine resistance [43]

 Breast cancer DANCR b miR‑758‑3p ↑ATG5, ↑LC3B, ↓Beclin‑1 ↑Caspase 3, ↑Caspase 9, ↑Bax, 
↓Bcl‑2

[44]

GAS5 a – ↑LC3B, ↑Beclin‑1, ↑ULK1, ↑ULK2 ↑Chemosensitivity [45]

H19 b – ↓Beclin‑1, ↓LC3‑II ↓Tamoxifen resistance, 
↑DNMT3B

[46]

OTUD6B‑AS1 a miR‑26a‑5p ↑LC3B‑II ↑γ‑H2AX, ↓p‑ATR, ↓p‑ATM, 
↓p‑RAD51

[47]

 Bladder cancer MEG3 b – ↑LC3‑II ↓Apoptosis, ↓G0/G1 phase 
populations

[48]

ADAMTS9‑AS1 b AMDAMT9 ↑Beclin‑1, ↑LC3‑II/LC3‑I ratio ↑Caspase 9, ↑Bax, ↓Vimentin, 
↓N‑cadherin, ↓Snail, ↑E‑cad‑
herin, ↓p62, ↓Bcl‑2, ↓PIK3CB, 
↓p‑AKT, ↓p‑mTOR

[49]

 Cervical cancer ROR1‑AS1 b miR‑670‑3p ↓Beclin 1, ↑LC3‑I, ↓LC3‑II ↓Proliferation, ↑Apoptosis [50]

RP11‑381N20.2 a – ↓Paclitaxel‑induced autophagy, 
↓ATG7

↑Chemosensitivity [51]

MLLT4‑AS1a Myosin‑9 ↑LC3‑II, ↓p62 ↓Migration, ↓Invasion, [52]

 Clear cell renal cell carcinoma TUG1 b miR‑31‑5p ↑LC3‑II/LC3‑I ratio, ↓p62 ↓PCNA, ↑cle‑Caspase 3, ↓FLOT1 [53]

 Colon cancer EGOT a – ↓Beclin‑1, ↑p62, ↓LC3‑II/LC3‑I ↓cle‑Caspase 3, ↓Bax, ↑Bcl‑2, 
↑Proliferation, ↑Invasion

[54]

CASC2 a miR‑214 ↑Beclin‑1, ↑LC3‑II ↓TRIM16, ↑Bax, ↓Bcl‑2, ↑cle‑
Caspase 3, ↓Proliferation

[55]

LINC00858 b – ↑Beclin‑1, ↑LC3II/I ↑Bax, ↓Bcl‑2, ↑cle‑Caspase 3, 
↑p27

[56]

KCNQ1OT1 b miR‑34a ↓Atg4B, ↓LC3II, ↑cle‑PARP, ↑Chemosensitivity, 
↓Proliferation

[37]

Colorectal cancer NEAT1 b miR‑34a‑5p ↓ATG9A, ↓ATG4B, ↓Beclin‑1, 
↓LC3II/I ratio, ↓ULK1

↑cle‑Caspase 3, ↓HMGB1, ↑Che‑
mosensitivity

[57]

SLCO4A1‑AS1 a miR‑508‑3p ↑LC3B‑II ↑Proliferation, ↓Apoptosis [58]

SNHG14 b miR‑186 ↓ATG14, ↓LC3B ↓Proliferation, ↓Migration, 
↓Invasion, ↓Cisplatin resistance

[34]

UCA1 b miR‑23b‑3p ↓LC3‑II/LC3‑I ratio, ↓Beclin‑1, 
↑p62

↑Bax, ↑Caspase 3, ↓5‑FU resist‑
ance, ↓ZNF281

[59]

MALAT1 b miR‑101 ↓LC3‑II/LC3‑I ratio, ↑p62 ↓Proliferation, ↑cle‑Caspase 3 [60]

CPS1‑IT1 a – ↓LC3‑II, ↓Beclin‑1, ↓HIF‑1α, ↓N‑cadherin, ↓Vimen‑
tin, ↑E‑cadherin, ↑ZO‑1

[61]

H19 a miR‑194‑5p ↑LC3‑II, ↓p62 ↑Proliferation, ↑SIRT1, ↑Chem‑
oresistance

[62]

SNHG6 b miR‑26a‑5p ↓p‑ULK1, ↓ATG13, ↓ULK1 ↓Proliferation, ↑cle‑Caspase 3, 
↑cle‑ PARP, ↓Chemoresistance

[63]

CASC9 b – ↑LC3B‑II, ↓p62 ↓Proliferation, ↓Migration, 
↓Vimentin, ↑E‑cadherin, 
↑p‑AMPKα/AMPKα, ↓p‑AKT, 
↓p‑mTOR

[64]

SNHG8 a miR‑588 ↑LC3‑II, ↑ATG7, ↑Proliferation [65]

TUG1 a miR‑195‑5p ↑LC3II, ↑Beclin‑1 ↑Proliferation, ↓p53, ↓Bax, ↑Bcl‑
2, ↓Caspase 3, ↑HDGF, ↑DDX5, 
↑β‑catenin

[66]
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Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

Gastric cancer SNHG11 b miR‑483‑3p/miR‑1276 ↓LC3‑II/LC3‑I ratio, ↑p62, 
↓LAMP1

↓Twist, ↓Nanog, ↓LRG5, 
↓CD133, ↓EpCAM, ↓Sox2, 
↓Bcl‑2, ↑Bax, ↓MMP‑2, ↓MMP‑7, 
↑E‑cadherin, ↓N‑cadherin, 
↑GSK‑3β, ↓β‑catenin, ↑cle‑ PARP, 
↑cle‑Caspase 3, ↑cle‑Caspase 6

[67]

JPX b miR‑197 – ↓Proliferation, ↓Migration, 
↓Invasion

[68]

LINC01572 b miR‑497‑5p ↓Autophagy ↓Proliferation, ↓Migration, 
↓Invasion, ↓Cisplatin resistance

[69]

CRNDE a – ↓LC3‑II ↑Apoptosis, ↑cle‑ PARP, ↑cle‑
Caspase 3, ↓Chemoresistance

[70]

MALAT1 a miR‑204 ↑LC3B ↑Proliferation, ↑Ki67, ↑TRMP3 [71]

MALAT1 b miR‑23b‑3p ↓LC3‑II/LC3‑I ratio, ↑p62, 
↓ATG12

↓Chemoresistance [72]

MALAT1 a miR‑30b ↑LC3‑II, ↓p62, ↑ATG5 ↑Proliferation, ↑Cisplatin resist‑
ance

[73]

HULC a – ↑LC3‑II/LC3‑I, ↑Beclin‑1, ↓p62 ↑FoxM1, ↑MDR1, ↑Cisplatin 
resistance

[74]

HAGLROS b miR‑100‑5p ↑LC3‑II/LC3‑I, ↓p62 ↓p‑mTOR, ↓mTOR, ↓p‑4E‑BP1, 
↓Proliferation, ↓Migration, 
↓Invasion

[75]

EIF3J‑DT b miR‑188‑3p ↓LC3‑II, ↓ATG14 ↓Proliferation, ↑cle‑PARP, ↑cle‑
Caspase 3, ↓Chemoresistance

[76]

DANCR b miR‑194 ↑LC3‑II/LC3‑I ratio, ↑Beclin‑1 ↑Apoptosis [77]

CCAT1 a miR‑140‑3p ↑LC3A/B, ↑Beclin‑1, ↑ATG5, 
↑ATG12

↑Proliferation, ↑Migration, 
↑Invasion

[78]

LIT3527 b – ↑LC3‑II ↓Proliferation, ↑Apoptosis, 
↓Migration, ↓p‑AKT, ↓p‑mTOR, 
↓p‑ERK, ↓4EBP1, ↓Metastasis

[79]

FEZF1‑AS1 b – ↓LC3‑II, ↓ATG5 ↑Bax, ↓Bcl‑2, ↑cle‑Caspase 3, 
↓MDR1, ↓MPR1, ↓S‑phase cell 
populations, ↓Chemoresistance

[33]

LINC00963 b miR‑4458 ↓LC3‑II, ↑p62 ↓Proliferation, ↓Migration [35]

 Glioblastoma LINC00470 a miR‑101 ↓LC3‑II, ↓ATG7, ↓ATG3, ↓Beclin‑1 ↑ELFN2, ↓Dicer [38]
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Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

 Glioma MALAT1 b miR‑101‑3p ↓LC3‑II, ↑p62, ↓ATG4D ↓Proliferation, ↓STMN1, ↓RAB5A [80]

CASC2 a miR‑193a‑5p ↓LC3‑II, ↓Beclin‑1, ↑p62 ↑mTOR, ↓Migration [81]

GAS5 a – ↓LC3‑II, ↑p62 ↓Proliferation, ↑p‑mTOR ↑Che‑
mosenstivity

[82]

AC023115.3 b miR‑26a ↑LC3‑II, ↓p62 ↓cle‑Caspase 3, ↓cle‑ PARP [83]

Linc‑RA1 a – ↓LC3B‑II/I ratio, ↑p62 ↓% DNA damage, ↓% Irradia‑
tion‑induced death, ↑H2Bub1, 
↓γ‑H2AX, ↑Radioresistance

[84]

H19 a – ↓Autophagy, ↑p‑ULK1 ↑Proliferation, ↑Migration, 
↓p‑mTOR

[85]

LINC00470 a miR‑580‑3p ↓LC3‑II/LC3‑I, ↓Beclin‑1, ↑p62 ↑Proliferation, ↓G1phase cell 
population, ↑p‑PI3K, ↑p‑mTOR, 
↑p‑AKT

[86]

Lnc‑NLC1‑C b – ↓LC3II/I, ↓p62, ↑ATG9 ↓Proliferation, ↓Migration, 
↓Invasion, ↑ROS generation, 
↑Rab1, ↓PRDX‑3

[87]

DRAIC a – ↓LC3‑II, ↓p62, ↓p‑ULK1 (S757) ↓Migration, ↓Invasion, 
↓p‑S6K, ↑p‑AMPK, ↑p‑RPTOR, 
↑p‑FOXO3a

[88]

 Head and neck squamous cell 
carcinoma

LINC00460 b miR‑206 ↑LC3‑II/I ratio, ↑Beclin‑1 ↓STC2, ↓AKT, ↓ERK, ↓p‑ERK, 
↓p‑AKT, ↑G0/G1‑phase cell 
arrest, ↑Bax, ↑cle‑PARP, ↑cle‑
Caspase 3

[89]

EIF3J‑DT b – ↓LC3‑II, ↑p62, ↓ATG14 ↓Proliferation, ↓Colony forma‑
tion, ↑Apoptosis, ↑cle‑Caspase 
3, ↑cle‑ PARP, ↓Cyclin D1, ↑p21, 
↑Taxol sensitivity

[90]
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Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

 Hepatocellular cancer SNHG11 b mir‑184 ↓AGO2, ↓Beclin‑1, ↓LC3‑II/I ratio ↑cle‑Caspase 3, ↓Migration, 
↓Invasion

[91]

HOTAIR a – ↑LC3‑II, ↑ATG3, ↑ATG7 ↑Proliferation [92]

H19 b – ↓LC3‑II/1 ratio, ↓Beclin‑1, ↑p62 ↑Proliferation, ↑G0/G1‑phase 
cell population, ↓cle‑Caspase 3, 
↓cle‑Caspase 9, ↑Bcl‑2, ↓Cyt c, 
↑p‑PI3K, ↑p‑AKT, ↑p‑mTOR

[93]

PVT1 a miR‑365 ↑LC3‑II, ↑ATG3 ↑Proliferation, ↑Ki67 [94]

CCAT1 a miR‑181a‑5p ↑LC3‑II, ↓p62, ↑ATG7 ↑Proliferation [95]

MEG3 a – ↓LC3‑II/LC3‑I, ↓Beclin‑1 ↓Proliferation, ↓ILF3, ↑p‑PI3K, 
↑p‑AKT, ↑p‑mTOR

[96]

HNF1A‑AS1 a miR‑30b‑5p ↑LC3BII/I, ↓p62, ↑ATG5, ↑Proliferation, ↑Bcl‑2 [97]

MCM3AP‑AS1 b miR‑455 ‑ ↓Migration, ↓Vessel formation [98]

NBR2 a – ↓LC3 II/I ratio, ↓Beclin‑1, ↑p62, ↓Proliferation, ↓Migration, 
↓Invasion, ↓p‑ERK, ↓p‑JNK

[99]

NEAT1 a miR‑204 ↑LC3‑II/I ratio, ↑ATG3 ↓Sorafenib‑induced growth 
inhibition, ↑p‑AKT, ↑p‑mTOR,

[36]

DCST1‑AS1 b – ↑Autophagy ↓Proliferation, ↓Migration, 
↑Apoptosis

[100]

HAGLROS b miR‑5095 ↓LC3 II/I ratio, ↓Beclin‑1, ↑p62 ↑Bax, ↑cle‑Caspase 3, ↑cle‑
Caspase 9, ↓Bcl‑2, ↓p‑PI3K, 
↓p‑AKT, ↓p‑mTOR, ↑PTEN

[101]

DANCR b miR‑222‑3p ↓Autophagy ↓Proliferation [102]

HULC a miR‑15a ↑LC3 II/I ratio ↑Proliferation, ↑Sirt1, ↓PTEN, 
↑JAK, ↑PKM2, ↑CDK2, ↑p‑PI3K, 
↑p‑AKT, ↑p‑mTOR, ↑Jun, 
↑Survivin

[103]

ATB a – ↑LC3 II/I ratio, ↑ATG5 ↑Proliferation, ↓p‑YAP [104]

CRNDE a miR‑543 ↑ATG4B, ↑LC3‑II/I ratio, ↓p62 – [105]

RP11‑295G20.2 a PTEN ↓LC3B ↓PTEN, ↑p‑AKT, ↓FOXO3a [106]

CCAT2 b miR‑4496/ELAVL1 ↓LC3 II/I ratio, ↓Beclin‑1, ↑p62 ↓Migration, ↓Invasion [107]

HnRNPU‑AS1 a miR‑556‑3p/miR‑580‑3p ↑Autophagy ↓Proliferation, ↓Migration, [108]

 Hypoxic tumor LincRNA‑p21 b – ↓LC3 II, ↑p62 ↓Proliferation, ↑G2/M arrest 
of cell populations, ↓Migration, 
↓HIF‑1α,

[109]

 Laryngeal squamous cell 
carcinoma

H19 b miR‑107 ↓LC3 II/I ratio, ↓Beclin‑1, ↑p62, 
↓LAMP2

↓Chemoresistance [110]

 Lung cancer MSTO2P b – ↓Agt5, ↓LC‑3II ↓Proliferation, ↓EZH2 [111]

LCPAT1 b RCC2 Autophagy halted after CSE/ 
PM2.5 exposure

↓Proliferation, ↓Migration, 
↓Invasion

[112]

LINC00857 b YBX1 ↑LC3 II/I ratio ↓Proliferation, ↑cle‑PARP, ↓YBX1, 
↓p‑MET, ↑p‑AMPKa

[113]

PANDAR a – ↑Autophagy, ↑Beclin‑1 ↓Proliferation [114]

MITA1 a – ↑LC3 II/I ratio, ↑Beclin‑1, ↓p62 ↓Apoptosis, ↑Gefitinib resist‑
ance

[115]

LINC01279 b SIN3A ↑Beclin‑1, ↓p62 ↓Proliferation, ↓Migration, 
↓Invasion, ↑Apoptosis, ↓p‑ERK, 
↓FAK, ↑p53, ↓p21,

[116]
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Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

LINC00265 b SIN3A ↑LC3 II/I ratio, ↑Beclin‑1, ↓p62 ↓Proliferation, ↓Migration, 
↓Invasion, ↑Apoptosis, 
↓p‑mTOR, ↓p‑P70, ↑p‑AMPK

[117]

 Lymphoma BCYRN1 a – ↑Autophagy, ↑Beclin‑1, ↑LC3‑II ↑Proliferation, ↑Bcl‑2, ↑Cyclin 
D1, ↓p53, ↓Bax, ↓p21, ↓p‑mTOR, 
↓p‑AKT

[118]

 Multiple myeloma MALAT1 b HMGB1 ↓Beclin‑1, ↓LC3B ↓Proliferation, ↑Apoptosis, 
↓HMBG1

[119]

 Nasopharyngeal cancer MEG3 a miR‑21 ↑LC3‑II/I ratio, ↑Beclin‑1, ↓p62 ↑Bax, ↑cle‑Caspase 3, ↓Bcl‑2, 
↑PTEN

[120]

LINC00313 b – ↑LC3‑II, ↓p62 ↓Proliferation, ↓SOX2, ↓Oct4, 
↓Nanog, ↓CD133, ↓PTBP1, 
↓STIM1, ↓p‑AKT, ↓p‑mTOR, 
↓p‑P70S6K

[121]

 Neuroblastoma SNHG7 b miR‑329‑3p ↓LC3B‑II/LC3B‑I, ↓Beclin‑1, ↑p62 ↓Proliferation, ↓Chemoresist‑
ance

[122]

 Non-small cell lung cancer UCA1 b miR‑185‑5p ↓LC3‑II/I ratio, ↓Beclin‑1, ↑p62, ↓Proliferation, ↓Ki67, ↑Caspase 
3, ↓WISP2, ↓β‑catenin, ↓TCF4

[123]

NBAT1 b PSMD10 ↑LC3‑II, ↓p62, ↑ATG7 ↑PSMD10, ↑Proliferation, 
↑Chemoresistance

[124]

BLACAT1 a miR‑17 ↑LC3‑II/I ratio, ↑Beclin‑1, ↑ATG7 ↑Chemoresistance, ↑Prolifera‑
tion, ↑MRP1

[125]

GAS5 a – ↓LC3‑II ↓Chemoresistance, ↓Prolifera‑
tion

[126]

PVT1 b miR‑216b ↓LC3B‑II/I, ↑p62, ↓Beclin‑1 ↑Apoptosis, ↑Cisplatin sensitiv‑
ity,

[127]

 Osteosarcoma CTA a miR‑210 ↓LC3‑II/LC3‑I ↓BNIP3/BNIP3L, ↑cle‑Caspase 
3, ↑Doxorubicin sensitivity, 
↑Apoptosis

[128]

SNHG15 b miR‑141 ↓LC3‑II/LC3‑I, ↓ATG5, ↑p62 ↓Proliferation, ↓Migration, 
↓Invasion

[129]

SNHG6 b miR‑26a‑5p ↓ULK1 ↑ATF3, ↑cle‑Caspase 3, ↓Prolif‑
eration, ↓Migration, ↓Invasion

[130]

 Ovarian cancer HOXA11‑AS b – ↑LC3‑II/I ratio, ↑Beclin‑1, ↓p62 ↓Migration, ↓Invasion, ↑Cispl‑
atin sensitivity

[131]

TUG1 b miR‑29b‑3p ↓Beclin‑1, ↓LC3B‑II/I ↑cle‑Caspase 3, ↑cle‑Caspase 
7, ↓Proliferation, ↑Paclitaxel 
sensitivity

[132]

XIST b miR‑506‑3p ↓LC3‑II/I ratio, ↑p62 ↑Bax, ↓Bcl‑2, ↑Carboplatin 
sensitivity

[133]

 Pancreatic cancer LINC01207 b miR‑143‑5p ↑LC3‑II, ↑Beclin‑1, ↓p62 ↓AGR2, ↓Cell growth, ↑Apopto‑
sis, ↓Bcl‑2/Bax

[134]

PVT1 b miR‑619‑5p ↓ATG14, ↓LC3‑II, ↑p62 ↓Pygo2, ↓Cyclin‑D1, ↓c‑Myc, 
↓Axin2, ↓Gemcitabine resist‑
ance

[135]

MALAT1 b HuR ↓LC3B II/I, ↑p62, ↓LAMP‑2 ↓MMP‑3, ↓MUC4 [136]

SNHG14 b miR‑101 ↓ATG4D ↓RAB5A, ↓Gemcitabine resist‑
ance, ↓Migration, ↓Invasion

[137]

ANRIL b miR‑181a ↓LC3‑II, ↑Beclin‑1 ↓HMGB1, ↓Proliferation, ↓Snail, 
↓Vimentin, ↑E‑ cadherin, 
↓N‑cadherin

[138]

 Papillary thyroid cancer RP11‑476D10.1 b miR‑138‑5p ↑Beclin‑1, ↑LC3B ↓LRRK2, ↑Bax ↓Bcl‑2 [139]

BANCR b – ↓LC3‑II/LC3‑I ↑Apoptosis, ↑Cell population 
in the G1 phase

[140]
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Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

 Prostate cancer HULC b – ↑p‑Beclin‑1, ↑LC3B‑II ↑Bax, ↑Caspase 3, ↓PCNA, ↓Cyc‑
lin D1, ↑Irradiation sensitivity

[141]

SNHG1 b EZH2 ↑LC3‑II, ↑Beclin‑1, ↓p62 ↓p‑PI3K, ↓p‑AKT, ↓p‑mTOR, 
↓p‑p70S6K, ↓Wnt1, ↓β‑catenin, 
↓c‑Myc, ↓Cyclin D1, ↓EZH2

[142]

PRRT3‑AS1 b PPARγ ↑LC3‑A, ↑LC3B, ↑Beclin‑1 ↓p‑S6K1, ↓NF‑κB1, ↓COX2, 
↓p‑4EPB1, ↓PCNA, ↓Ki67, 
↑PPARγ, ↑Bax, ↑cle‑Caspase 3, 
↓Bcl‑2, ↓Migration, ↓Invasion

[143]

 Renal cell carcinoma LBX2‑AS1 b – ↑LC3‑II, ↑NIX/BNIP3L ↓Proliferation, ↓Migration, 
↓FOXO3A

[144]

SNHG1 b PTBP1 ↓LC3‑II, ↓Beclin‑1, ↑p62, ↓ATG7 ↓Proliferation, ↓Migration, 
↓Invasion, ↑Apoptosis, ↓Suni‑
tinib resistance

[145]

 Retinoblastoma MALAT1 b miR‑124 ↓LC3‑II, ↓Beclin‑1, ↑p62 – [146]

 Uveal melanoma ZNNT1 a – ↑ATG12, ↓p62 ↓Tumor cell growth, ↓Migra‑
tion, ↓Invasion

[147]

Cardiovascular diseases

 Atherosclerosis FA2H‑2b MLKL ↓LC3‑II, ↓LAMP‑1, ↑p62 ↑IL‑6, ↑VCAM‑1, ↑MCP‑1, ↑IL‑8, 
↑IL‑18, ↑IL‑1β, ↑TNF‑α, ↓IL‑10, 
↑p‑PI3K, ↑p‑AKT, ↑p‑mTOR, 
↓p‑AMPK

[148]

MALAT1b miR‑15b‑5p ↑LC3‑II, ↑ATG1, ↓p‑mTOR, ↓p‑ERK1/2, ↓VCAM‑1, 
↓ICAM‑1

[149]

LOC107986345a miR‑128‑3p ↑MAP1LC3B2, ↓p62 ↑EPHB2, ↓ICAM‑1 [150]

MALAT1a miR‑216a‑5p ↑Beclin‑1, ↑LC3 II/I ↓Apoptosis, ↓Caspase 3 [151]

GAS5b miR‑26a ↑LC3 II/I, ↓p62 ↓Apoptosis [152]

ZNF295‑AS1b miR‑508‑5p ↓LC3B, ↓ATG7 ↑Proliferation [153]

CTBP1‑AS2a miR‑195‑5p ↑LC3, ↑Beclin‑1, ↑ATG14 ↓Proliferation, ↓Colony forma‑
tion, ↓PCNA, ↓Ki67

[154]

TUG1b – ↑LC3 II/I, ↓p62, ↑ATG3 ↓Proliferation, ↓Migration, 
↑p‑AMPK/AMPK, ↓p‑mTOR/
mTOR

[155]

GAS5 b miR‑193‑5p ↑LC3 II/I, ↓p62 ↓SRSF10 [156]

 Congenital heart disease NEAT1a miR‑181b ↓LC3 II/I, ↓Beclin‑1, ↑p62 ↑Proliferation, ↓Apoptosis, 
↓p53, ↑Bcl‑2, ↓Bax, ↓cle‑caspase 
3, ↑p/t‑PI3K, ↑p/t‑AKT, ↑p/t‑
mTOR, ↑p/t‑STAT3

[157]

 Heart failure MEG3 b – ↓Beclin‑1, ↓LC3 II/I, ↑p62 ↑Cardiac function, ↓NPPA, 
↓NPPB, ↓MYH7, ↑Bcl‑2/Bax ratio, 
↑p‑AKT, ↑p‑GSK3β

[158]
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Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

 Myocardial infraction MALAT1b miR‑558 ↓ULK1, ↓LC3‐II/I ↑cle‑PARP, ↓Proliferation, 
↑Apoptosis

[159]

MALAT1a ‑ ↓LC3 II/I, ↓Beclin‑1 ↓Proliferation, ↑Apoptosis 
↓TSC2, ↑H3K27me3, ↑p‑mTOR, 
↑Caspase 3, ↑Bax, ↓Bcl‑2

[160]

MALAT1b miR‑30a ↑Beclin‑1 – [161]

MALAT1a – ↓Autophagy ↑Apoptosis [162]

MALAT1a miR‑206 ↑ATG3 ↑CK‐MB, ↑LDH [163]

MALAT1b miR‑4465 ↓ULK1, ↓LC3‑II/I, ↑p62 Hypoxia‑induced cell injury [164]

XISTb miR‑133a ↓LC3 II/I, ↓Beclin‑1 ↑Proliferation, ↓Apoptosis, 
↓Myocardial I/R injury

[165]

DANCRa miR‑6324 ↑Beclin‑1, ↑LC3 II/I, ↓p62 ↑Proliferation, ↓Apoptosis, ↑Bcl‑
2, ↓Bax, ↓cle‑caspase 3, ↓cle‑
caspase 9, ↑p‑IRE1α,↑Xbp1s 

[166]

NEAT1b, c miR‑378a‑3p ↓ATG12, ↓LC3, ↑p62 ↑Proliferation, ↓Apoptosis, 
Migration

[167]

MHRTa, c – ↑Beclin‑1, ↑LC3 II/I ↓Apoptosis, ↑LVEF, ↑LVFS, 
↓Myocardial fibrosis, ↓Bax/Bcl‑2 
ratio, ↓cle‑caspase 3

[168]

TUG1b miR‑142‑3p ↓Beclin‑1, ↓LC3 II/I, ↑p62 ↓I/R‑induced infarction size, 
↓Apoptosis

[169]

KCNQ1OT1b miR‑26a‑5p ↓Beclin‑1, ↓LC3 II/I, ↓ATG12 ↓cle‑Caspase 3, ↑Bcl‑2, ↓Bax [170]

AK088388b miR‑30a ↓Beclin‑1, ↓LC3 II/I ↑Proliferation, ↓Apoptosis [171]

PVT1b miR‑186 ↓Beclin‑1, ↓LC3 II/I, ↑p62 ↑Proliferation, ↓Apoptosis, ↑Bcl‑
2, ↓Bax, ↓cle‑caspase 3

[172]

NEAT1a ‑ ↑LC3 II/I, ↓p62, ↑ATG5, ↑ATG7 ↑LDH, ↓SOD, ↑Foxo1↑CK‑MB, 
↑LVEDP, ↑I/R injuries

[173]

APFb miR‑188‑3p ↓LC3 II/I, ↓autophagic vesicles, 
↓ATG7

↑Myocardial function, ↓Cell 
death

[174]

H19a – ↑Beclin‑1, ↑LC3 II/I, ↑ATG7 ↓LVEDD,↑LVEF, ↓infarct size [175]

MIRFb miR‑26a ↑ATG7, ↑ATG5, ↑Beclin‑1, ↑LC3 
II/I ↓USP15, ↓p62

↑Proliferation, ↓Ischemic dam‑
age

[176]

AK139328b miR‐204‐3p ↓ATG7, ↓ATG5, ↓LC3 II/I ↑p62 ↓Apoptosis, ↓LVEDD, ↓CK‑MB, 
↓LDH, ↓LVESD, ↑LVEF, ↑α‐SMA

[177]

CAIFb p53 ↑H2O2 induced autophagy ↑Myocardin, ↑Apoptosis [178]

 Myocardial hypertrophy MIATb ‑ ↓LC3 ↓p‑mTOR, ↓p‑AMPK, ↓Ang II‑
induced MH

[179]

 Ventricular septal defects MEG3b miR‑7‑5p ↑Beclin‑1, ↑ATG7, ↓p62 – [180]

Immune and Inflammatory diseases

 Asthma TRPM2‑ASb TRPM2 ↑LC3 ↓Proliferation, ↑Apoptosis, ↓IL‑
1β, ↓IL‑4, ↓IL‑6, ↓IL‑10, ↓TNF‑α, 
↓TGF‑β

[181]

 CKD MANTISb – ↑Beclin‑1, ↑LC3 II/I ↓Migration, ↓Invasion, ↓Pro‑
liferation, ↑Apoptosis, ↓Bcl‑2, 
↑Bax, ↑cle‑caspase 3, ↓SOX18

[182]

 COPD LINC00987a let‑7b‑5p ↓LC3 II/I, ↑p62, ↓ATG5 ↑Proliferation, ↓Apoptosis, 
↓Caspase 3, ↓ROS, ↑SOD1, ↓IL‑6, 
↓IL‑8

[183]

 Lupus nephritis HOXA11‑OSb miR‑124‑3p ↓Beclin‑1, ↓LC3B ↓Cyr61, ↑Nephrin, ↑Podocin [184]
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LncRNA Target miRNA/gene Mechanism of action on 
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Effect after overexpression/
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 Osteoarthritis SNHG7a miR‑34a‑5p ↓Beclin‑1, ↓LC3 II/I ↑Proliferation, ↓Apoptosis 
↑SYVN1, ↑PCNA, ↓cle‑Cas‑
pase‑3

[185]

KLF3‑AS1b YBX1 ↑LC3 II/I, ↓p62 ↓Proliferation, ↑Apoptosis, 
↓PI3K, ↓p‑Akt, ↓p‑mTOR

[186]

HOTAIRb miR‑130a‑3p ↑LC3 II/I, ↓p62 ↑Proliferation, ↓Apoptosis, 
↑Bcl‑2, ↓Bax, ↓cle‑Caspase‑3, 
↑Survivin

[187]

PCGEM1a miR‑770 ↑ATG12, ↑ATG5, ↑ATG3, ↑Bec‑
lin‑1

↑Proliferation, ↑BCL2A1, ↑BIRC3, 
↑MCL1, ↑Bcl‑2, ↓cle‑ PARP, ↓cle‑
Caspase 9

[188]

CIRb ‑ ↓Beclin‑1, ↓LC3 II/I ↑COL2A1, ↓MMP‑3, ↓Cartilage 
degeneration, ↑OARSI scores

[189]

PVT1b miR‑27b‑3p ↑LC3 II/I, ↑Beclin‑1 ↑Proliferation, ↓Apoptosis, ↓cle‑
Caspase 3, ↓IL‑6, ↓TNF‑α

[190]

OANCTb FTO ↑Beclin‑1, ↑ATG4B, ↓p62 ↓M1 polarization, ↓IL‑6, ↓TNF‑
α, ↓IL‑12, ↑IL‑10, ↑TGF‑β1, 
↓MMP1, ↓MMP9, ↑Collagen II, 
↑Aggrecan

[191]

NEAT1a miR‑122‑5p ↑LC3 II/I, ↑Beclin‑1 ↑Proliferation, ↓Apoptosis, 
↑Sesn2, ↑Nrf2, ↑Srx1, ↑Trx1, 
↑Ki67, ↓MMP‑3, ↓MMP‑13, 
↑Aggrecan

[192]

MCM3AP‑AS1b miR‑149‑5p ↑LC3 II/I, ↑Beclin‑1 ↑Proliferation, ↓Apoptosis, ↓Bax, 
↑Bcl‑2, ↓cle‑Caspase 3, ↓MMP‑
13, ↑Collagen II, ↑Aggrecan, 
↓Notch1

[193]

GAS5b miR‑144 ↑LC3 II, ↑Beclin‑1 ↓Apoptosis, ↓Bax, ↑Bcl‑2, 
↓mTOR, ↓p‑mTOR

[194]

GAS5a miR‑21 ↓LC3B, ↓ATG7, ↓Beclin‑1 ↑Apoptosis, ↑MMP‑2, ↑MMP‑3, 
↑MMP‑9, ↑MMP‑13, ↑ADAMTS‑4

[195]

POU3F3a miR‑29a‑ 3p ↓Autophagy ↓Chondrocytes injury, ↑Prolif‑
eration, ↓Apoptosis

[196]

 Periodontitis H19a – ↑LC3 II/I, ↑Beclin‑1 ↑TNF‑α, ↑IL‑6, ↓p‑AKT [197]

FER1L4a – ↑LC3 II/I, ↑Beclin‑1 ↑FOXO3, ↓p‑FOXO3, ↓p‑AKT [198]

 Rheumatoid arthritis ZFAS1b miR‑2682‑5p ↓LC3‑II, ↑p62 ↓Proliferation, ↑Apoptosis, ↓Bcl‑
2, ↑Bax, ↑cle‑Caspase 3, ↓TNF‑α, 
↓IL‑6, ↑IL‑10, ↓ADAMTS9

[199]

Neurological diseases

 Alzheimer’s Disease BACE1‑ASb miR‑214‑3p ↓Beclin‑1, ↓LC3 II/I, ↑p62 ↑Proliferation, ↓Apoptosis, ↓Bax, 
↑Bcl‑2, ↑Cyclin D1

[284]

BACE1‑ASb miR‑214‑3p ↓Beclin‑1, ↓LC3 II/I, ↑p62, ↓ATG5 ↑Proliferation, ↓Apoptosis, 
↑Bcl‑2, ↓cle‑caspase 3, ↑GSH/
GSSG ratio

[32]

17Ab – ↑LC3 II/I ↓Apoptosis, ↓Migration, ↓Inva‑
sion, ↑G1 phase arrest, ↓Aβ42, 
↑GABABR 2,

[200]

RMRPb miR‑3142 ↓LC3 II/I, ↓Beclin‑1, ↑p62 ↑Proliferation, ↓Apoptosis, 
↑Bcl‑2, ↓Bax, ↓cle‑Caspase 3, 
↓cle‑Caspase 9, ↓TRIB3,

[201]

MIR600HGb NEDD4L ↑Autophagy ↓Aβ production, ↑Cognitive 
impairment, ↑PINK1

[202]

LINC01311a miR‑146a‑5p ↓Autophagy ↓Apoptosis, ↓APP activity [203]
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and caused apoptosis when treated with cisplatin. Fur-
thermore, lncRNA AC023115.3 chemosensitizes glioma 
cells by modulating the miR-26a-GSK3β axis [83].

LncRNAs in autophagosome elongation/closure process
Ubiquitin-like conjugation proteins such as ATG10 
(E2-like enzyme) and ATG7 (E1-like enzyme) regulates 
the ATG12-ATG5-ATG16 complex formation, which 
facilitates the transformation of LC3B to the membrane-
anchored form (LC3-II) from its soluble cytosolic form 
(LC3-I) [221, 238, 239]. Adaptor proteins like ATG19 
and ATG32 along with the neighbor of BRCA1 gene 1 
(NBR1), SQSTM1, and Nix, discriminatively promot-
ing the degradation of proteins by binding to LC3-II via 
attracting them to autophagosomes [221].

Increase in TGFB2 overlapping transcript 1 (TGFB2-
OT1) expression triggered by vascular endothelial 
inflammation upregulated the LARP1 expression and 
sponging miR-4459 which further increases ATG7, 
ATG3 and p62 expression [240]. In addition, ectopic 
overexpression of lncRNA growth arrest specific 5 
(GAS5) constrained autophagy by decreasing the lev-
els of ATG5, ATG3, ATG7, ATG12, LC3B, and Bec-
lin-1 expression [195]. Besides, HNF1A-AS1 promoted 
autophagy by averting the binding of miR-30b to its tar-
get genes such as ATG5, ATG12, and Beclin-1 thereby 
facilitating the HCC tumorigenesis [97]. Moreover, 
prostate cancer gene expression marker 1 (PCGEM1) 
lncRNA fostered autophagy by upregulating the ATG5, 
ATG3, ATG12 and Beclin-1 expression [188]. Further, 

Table 1 (continued)

LncRNA Target miRNA/gene Mechanism of action on 
autophagy

Effect after overexpression/
knockdown

Ref

 Parkinson Disease OIP5‑AS1a miR‑126 ↑Autophagy ↑PLK2, ↓Apoptosis, ↓p‑PERK, 
↓p‑elF2α

[204]

OIP5‑AS1a miR‑137 ↑Mitochondrial autophagy ↑Proliferation, ↓IL‑6, ↑IL‑10, 
↓IL‑1β, CXCL10, ↓CCL‑5, ↓G‑CSF, 
↓CCL4, ↓ROS

[205]

HOTAIRb miR‑874‑5p ↓ATG10 ↑Proliferation, ↓Apoptosis, ↑Bcl‑
2, ↓Bax, ↓IL‑6, ↓TNF‑α, ↓LDH, 
↓ROS, ↑SOD

[206]

NEAT1b – ↓LC3‑II/LC3‑I ↑Proliferation, ↓PINK1 [207]

NEAT1b miR‑374c‑5p ↓LC3‑II/I, ↑p62 ↑Proliferation, ↓Apoptosis, 
↑Dopamine, ↓cle‑Caspase 3, 
↓cle‑PARP, ↑Bcl‑2, ↓Bax,

[208]

NEAT1b miR‑107‑5p ↓LC3‑II/I, ↑p62 ↑Proliferation, ↓Apoptosis, 
↑Dopamine, ↓cle‑Caspase 3, 
↑Bcl‑2, ↓Bax,

[209]

SNHG14b miR‑519a‑3p ↓ATG10 ↑Proliferation, ↓Apoptosis, 
↓cle‑Caspase 3, ↓cle‑Caspase 9, 
↓LDH, ↓ROS, ↑SOD

[210]

BDNF‑ASb miR‑125b‑5p ↓LC3‑II/I, ↑p62 ↑Proliferation, ↓Apoptosis, 
↑Dopamine, ↓cle‑Caspase 3, 
↑Bcl‑2, ↓Bax,

[211]

SNHG1b miR‑221/222 ↑LC3 II/I ↓Apoptosis, ↓p27, ↓p‑mTOR, 
↓TH+ neuron death

[212]

Others

 Ischemic stroke MIATb REDD1 ↓LC3‑II/I, ↑p62 ↓REDD1, ↑p‑mTOR, ↑Bcl‑2, ↓Bax, 
↓cle‑Caspase 3

[213]

 Spinal Cord injury MIATa RBFOX2 ↑MCL‑1L, ↑Autophagy, ↓cle‑Caspase 3, ↓cle‑Caspase 9, 
↓Apoptosis, ↓Necrotic tissues

[214]

 Tuberculosis DANCRa miR‑1301‑3p/miR‑5194 ↑LC3 II/I, ↑ATG4D/ATG5 ↑STAT3/STAT5B, ↑RHEB [215]

Linc‑EPSb – ↑LC3 II/I ↓Apoptosis, ↓Cytochrome c, 
↓cle‑PARP, ↓cle‑Caspase 3, 
↑p‑JNK

[216]

MIATb miR‑665 ↓LC3‑II, ↑p62, ↓Beclin‑1 ↑Proliferation, ↓Apoptosis, ↓cle‑
Caspase 3, ↑Bcl‑2, ↓Bax

[217]

a: Overexpression; b: knockdown
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in hepatocellular carcinoma (HCC) lncRNA HNF1A-
AS1 repressed autophagy by preventing the binding of 
miR-30b-5p to its target protein ATG5 [97]. Interest-
ingly, upregulated expression of lncRNA HOX anti-
sense intergenic RNA (HOTAIR) was observed in 
HCC, that promotes autophagy by upregulating the 
levels of ATG7 and ATG3, and negatively regulating 
miRNAs including miR-34a, miR-10a, miR-331-3p, and 
miR-454-3p either through recruiting epigenetic modi-
fication enzymes by being a scaffold preventing the 
transcription of miRNA or by capturing miRNAs from 
their targets [92].

LncRNAs in autolysosome fusion process
The last step in the autophagy process is the formation 
of autolysosomes by fusing lysosomes to the autophago-
somes degrading the components of the cell. The crucial 
molecules including membrane proteins of the lysosome 
such as LAMP1 and LAMP2, Rab-SNARE system, and 
the adaptor proteins are involved in autolysosome fusion 
connecting the lysosome to autophagic and endocytic 
process [221, 241, 242]. Pleckstrin homology domain-
containing protein family M member 1 (Plekhm1), an 
adaptor protein possessing the LC3-interacting region, 
associates with the homotypic fusion and protein sort-
ing complex mediating the fusion of autophagosomes 
and endosomes with lysosomes [243]. LncRNA cardiac 
hypertrophy-associated transcript (Chast) along with 
Plekhm1 controls the autophagosomes fusion to the lys-
osomes by decreasing the ATG5 expression [244].

LncRNAs targeting autophagy in cancers
Cancer is one of the most significant health menaces 
of this century with approximately 19.3 million new 
incidences and 10 million deaths worldwide [245]. 
Although different treatment regimens have amelio-
rated the quality of life and survival patients, still out-
comes at the advanced stages are dismal [4, 246, 247]. 
With the increasing demand for safe and efficacious 
treatments to increase the quality of life in patients, it 
has become necessary to understand and recognize the 
causative features and develop diagnostic and therapeu-
tic interventions to circumvent this multigenic disease 
[4, 246, 248–252]. Growing lines of evidence implicates 
lncRNAs to be associated with modulating various hall-
marks of cancer either by acting as tumor suppressor or 
oncogenic elements [253]. LncRNAs being the master 
regulators have been known to regulate the autophagic 
process by acting as ceRNAs to sequester the autophagy 
related miRNAs involved in cancer progression (Fig. 4).

Various studies have shown the mechanistic action 
of lncRNAs that are involved in cancer development 
through modulating autophagy [36, 37, 48, 50, 57, 66, 

71, 83, 89, 98, 106, 111, 112, 120, 129, 137, 138, 140]. 
For instance, Zhang and the group demonstrated the 
role and mechanism of the lncRNA LINC00265 in acute 
myeloid leukemia (AML). In this study, the expression of 
LINC00265 was increased in AML cells and modulated 
the Interferon regulatory factor 2 (IRF2) expression via 
acting as ceRNAs for miR-485-5p leading to upregula-
tion of autophagy [41]. In another study, it was found 
that lncRNA urothelial carcinoma-associated 1 (UCA1) 
promoted autophagy by regulating the expression of 
ATG7 via targeting the miR-96-5p levels [42]. LncRNA 
differentiation antagonizing non-protein coding RNA 
(DANCR) was observed as an oncogene in AML by regu-
lating autophagy and chemoresistance. It was found that 
DANCR through its regulation of miR-874-3p/ATG16L1 
axis conferred cytarabine resistance and targeting this 
lncRNA might be a novel approach for combating AML 
[43].

Due to its heterogeneity and stratified subtypes, breast 
cancer reports for the highest incidences of cancer occur-
ring worldwide in the year 2020 [245]. Although various 
treatment approaches have been devised, none of them 
have been efficient to completely eradicate this malady 
at the advanced stage [254]. LncRNAs through its post 
transcriptional and translational regulation hold prom-
ise in the diagnosis and treatment of breast cancer. For 
instance,  Zhang and coworkers probed the mechanism 
of DANCR in modulation of apoptosis and autophagy 
in breast cancer. Knockdown of DANCR resulted 
in increased expression of different apoptosis and 
autophagic markers such as caspase-3, caspase-9, Bax/
Bcl-2, LC3B, Atg5. This inhibitory and anti-cancer effect 
of DANCR was found to be mediated by targeting PAX6 
expression via sponging miR-758-3p in breast cancer cells 
[44]. In another study, overexpression of lncRNA growth 
arrest-specific 5 (GAS5) was found to induce autophagy 
by regulating the levels of unc-51 like autophagy activat-
ing kinase (ULK)1/2. Further, GAS5 was shown to pro-
mote cisplatin chemosensitivity in breast cancer cells by 
mediating the ULK1/2 levels [45]. Another study assessed 
the role of lncRNA H19 regulation in tamoxifen-resistant 
breast cancer. Silencing of H19 resulted in inhibition of 
autophagy by increasing the binding of DNMT3B in the 
promoter region of Beclin-1 [46]. Another study found 
that lncRNA OTUD6B-AS1 was a negative regulator of 
DNA damage response in breast cancer by inhibiting the 
activation of phosphorylated forms of ATM, RAD51, and 
ATR [47].

Colorectal Cancer (CRC) is a heterogeneous malig-
nancy causing approximately 6,00,000 deaths annually 
worldwide [245]. Apart from early intervention by surgi-
cal resection, chemotherapy, radiotherapy, or a combi-
nation of all, no effective treatment exists for advanced 
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CRC. Recently, lncRNAs have emerged as major media-
tors of autophagy in CRC [54, 57, 60, 61, 255, 256]. For 
instance, in a study, it was observed that lncRNA CASC2 
was downregulated in colon cancer cell and tissues, and 
overexpression of CASC2 resulted in growth inhibition 
with induction of apoptosis and autophagy by increasing 
the levels of LC3B II and Beclin-1 [55]. In another study, 
lncRNA eosinophil granule ontogeny transcript (EGOT) 

expression was high in clinical samples of CRC. Ectopic 
expression of EGOT increased the proliferation and inva-
sive attributes of CRC cells by inhibiting the apoptosis 
and autophagy and decreasing the expression of Bec-
lin-1, LC3B II, BAX and cleaved caspase-3 [54]. Another 
study revealed the functional role of lncRNA nuclear 
paraspeckle assembly transcript 1 (NEAT1) in inducing 
the hallmarks in CRC cell lines. It was demonstrated that 

Fig. 2 The molecular pathways involving lncRNAs as the initiator of autophagy. In response to energy limitation, autophagy is initiated 
through the activation of AMPK and inhibition of mTORC1. This process leads to the activation of the ULK1 complex, which includes ULK1, ATG13, 
FIP200, and ATG101. The expression and activity of these regulatory pathways are influenced by lncRNAs: MEG3 and H19 positively regulate AMPK 
and mTORC1, while lncRNA AK156230 and Ad5‑lncRNA exerts a negative regulatory effect. Furthermore, the collective regulation of the ULK1 
complex is modulated by a network of lncRNAs, including PTENP1, MALAT1, TGFB2‑OT1, highlighting their roles in fine‑tuning the autophagic 
response under conditions of energy stress

Fig. 3 Molecular pathways demonstrating the role of Bcl‑2, Rubicon, linc‑ROR, and LncRNA loc146880 in autophagy regulation. LncRNAs such 
as linc‑ROR negatively regulates the formation of phagophore nucleation by modulating Beclin‑1 levels. Additionally, lncRNA loc146880 is known 
to modulates the process of phagophore formation
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the proliferation of CRC cells was markedly decreased 
by NEAT1 knockdown, which also improved 5-FU sen-
sitivity. Further, NEAT1 knockdown also inhibited the 
expression of Beclin-1, ULK1, and the ratio of LC3-II/I 
in CRC cell lines via targeting miR-34a [57]. Wang and 
colleagues sought to identify the biological functions of 
lncRNA SLCO4A1-AS1 in CRC. SLCO4A1-AS1 modu-
lated the expression of partition-defective 3 (PARD3) by 
acting as ceRNA for miR-508-3p leading to upregula-
tion of proliferation in CRC. Moreover, knockdown of 
SLCO4A1-AS1 resulted in attenuated autophagy and 
proliferation with increased apoptosis in CRC cell lines 
[58]. Another study found that lncRNA MALAT1 was 
upregulated in CRC tissues. Further, the expression of 
LC3-II mRNA was correlated with the MALAT1 level. 
Furthermore, MALAT1 also significantly increased cell 
proliferation and activated autophagy while decreas-
ing apoptosis in CRC cells via sponging miR-101 [60]. 
LncRNA small nucleolar RNA host gene 14 (SNHG14) 

and ATG14 was found to be upregulated in clinical CRC 
samples. Further, miR-184 was found to be a direct tar-
get of SNHG14, and miR-184 modulated the expression 
of ATG14. Overexpression of SNHG14 led to increased 
proliferation, migration, invasion, and cisplatin resistance 
in CRC cell lines [34]. Another study, it was observed that 
lncRNA taurine up-regulated gene 1 (TUG1) targeted 
miR-195-5p by modulating HDGF levels, thereby regu-
lating miR-195-5p/HDGF/DDX5/β-catenin axis in CRC 
resistance [66].

Additionally, it’s essential to note the interplay between 
lncRNAs, autophagy, and epithelial-mesenchymal tran-
sition (EMT) in cancer. EMT is a biological process that 
allows epithelial cells to undergo multiple biochemi-
cal changes enabling them to assume a mesenchymal 
cell phenotype, which includes enhanced migratory 
capacity, invasiveness, and resistance to apoptosis, con-
tributing to cancer progression [257, 258]. The role of 
lncRNA HOTAIR as a critical autophagy regulator has 

Fig. 4 LncRNAs modulating autophagy in various cancers. This figure illustrates the role of lncRNAs as key regulators of autophagy in different types 
of cancer. lncRNAs modulate gene expression through interactions with miRNAs that are associated with autophagy. Also, they play a crucial role 
in regulating several hallmarks of cancer, including uncontrolled proliferation, enhanced survival, invasion, migration, epithelial‑to‑mesenchymal 
transition (EMT), and angiogenesis. These lncRNA‑mediated modulations of autophagy contribute to cancer progression, highlighting their 
potential as therapeutic targets
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been discussed. However, it also functions as a scaffold 
for chromatin modifiers, such as PRC2 and LSD1, thus 
driving the transcriptional reprogramming that fos-
ters the transition from epithelial to mesenchymal traits 
[259]. Another example is the lncRNA MALAT1, which 
in addition to induce autophagy, it has been reported 
to regulate and EMT in esophageal cancer by affect-
ing the Ezh2-Notch1 signaling pathway [260], serving 
as a linker between these two pivotal processes. There-
fore, both HOTAIR and MALAT1, as well as probably 
other lncRNAs, may serve as a crucial linker between 
autophagy and EMT, orchestrating complex regulatory 
networks that facilitate cancer progression and resistance 
to therapy. Understanding the link between lncRNAs, 
autophagy, and EMT can potentially provide insights 
into developing novel therapeutic strategies for cancer 
treatment.

LncRNAs modulating autophagy in cardiovascular 
diseases
Cardiovascular diseases have emerged as a global health 
epidemic over the past few decades, affecting a signifi-
cant proportion of the population in both developed 
and developing nations [3, 261]. The etiological factors 
contributing to cardiovascular diseases are multifaceted, 
including both external and internal influences such as 
elevated cholesterol levels, excessive alcohol consump-
tion, poor dietary habits (e.g., insufficient intake of 
fruits), obesity, diabetes, hypertension, genetic predis-
position, and sedentary lifestyles [261]. Autophagy dys-
function has been implicated in various cardiovascular 
diseases, including atherosclerosis, myocardial infarc-
tion, and heart failure. Dysregulated autophagy adversely 
impacts cardiac cell viability, intracellular protein quality 
control, and the regulation of inflammatory and oxidative 
stress responses. Impaired autophagy leads to the accu-
mulation of damaged organelles and proteins, resulting 
in cardiomyocyte dysfunction and pathological cardiac 
remodeling [262–265]. Recent studies have identified 
lncRNAs as critical modulators of autophagy dysfunc-
tion in several cardiovascular diseases, highlighting their 
potential as therapeutic targets for mitigating disease 
progression (Fig. 5).

Myocardial infarction (MI), commonly referred to as a 
heart attack, is characterized by the necrosis of cardiac 
muscle tissue due to reduced or complete cessation of 
blood flow to the heart, typically caused by a blockage 
or thrombus in the epicardial arteries [266]. Dysregu-
lated macroautophagy has been implicated in exacerbat-
ing myocardial injury during MI, with lncRNAs playing 
a critical role in modulating autophagy in cardiac cells 
[267]. A study identified the lncRNA autophagy pro-
moting factor (APF) as a key regulator of autophagy in 

cardiomyocytes by targeting miR-188-3p and ATG7, 
influencing the autophagic response and the progres-
sion of myocardial infarction [174]. Another study 
demonstrated that lncRNA AK088388 interacts with 
miR-30a, resulting in elevated Beclin-1 expression and 
increased autophagy in cardiomyocytes, contributing to 
cell damage [171]. Liu et al. reported that lncRNA cardiac 
autophagy inhibitory factor (CAIF) regulates autophagy 
in cardiomyocytes through its control of p53 and myo-
cardin expression, further elucidating the complex inter-
play between lncRNAs and autophagic pathways during 
myocardial infarction [178].

Another lncRNA), known as cardiac hypertrophy-
related factor (CHRF), has been shown to exacerbate 
myocardial ischemia/reperfusion (I/R) injury by promot-
ing autophagy in  vitro through targeting ATG7 [268]. 
A study demonstrated that inhibition of the lncRNA 
hypoxia/reoxygenation injury-related factor in myocytes 
(HRIM) improved cardiomyocyte viability by reducing 
autophagy levels [269]. Liang et al. found that overexpres-
sion of miR-26a attenuated ischemia-induced cell death 
by enhancing autophagy via targeting Usp15 (ubiquitin-
specific peptidase 15). Further analysis revealed that the 
lncRNA myocardial infarction-regulatory factor (Mirf ) 
modulates miR-26a and inhibits autophagy, contribut-
ing to the regulation of myocardial cell survival during 
ischemic stress [176]. The lncRNA MALAT1 has been 
shown to influence myocardial infarction-related events 
through three distinct mechanisms. Firstly, MALAT1 
promotes cardiomyocyte injury by sponging miR-20b 
and enhancing Beclin1-mediated autophagy. Secondly, 
MALAT1 protects cardiomyocytes from isoproterenol-
induced apoptosis by sponging miR-558 and upregulat-
ing autophagy via the ULK1 pathway. Lastly, MALAT1 
inhibits autophagy by modulating the TSC2-mTOR 
pathway, which in turn promotes apoptosis in cardio-
myocytes [159, 160, 162]. In another study, the lncRNA 
TUG1 (taurine upregulated gene 1) was found to target 
miR-142-3p, contributing to the induction of apoptosis 
through autophagy in ischemia/hypoxia-challenged car-
diomyocytes by upregulating HMGB1 and Rac1 expres-
sion [169]. Similarly, inhibition of the lncRNA XIST 
(X-inactive specific transcript) was shown to ameliorate 
myocardial ischemia/reperfusion (I/R) injury by target-
ing miR-133a, suppressing autophagy, and regulating 
SOCS2 expression [165]. Collectively, these findings, 
along with numerous other studies, highlights the critical 
role of lncRNAs in modulating autophagy and impacting 
the pathophysiology of MI [161, 166, 172, 173, 175–179, 
270].

Diabetic cardiomyopathy is a heart disease induced 
by diabetes mellitus (DM) that ultimately leads to heart 
failure [271]. Non-coding RNAs, particularly miRNAs 
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and lncRNAs, have been found to significantly influence 
myocardial conditions in diabetic patients [272]. It is 
known that diabetic cardiomyopathy is particularly sensi-
tive to alterations in lncRNA expression. For instance, in 
a study, it was demonstrated that knockdown of lncRNA 
AK139328 in cardiomyocytes suppressed autophagy and 
prevented apoptosis [177]. Further, the lncRNA diabetic 
cardiomyopathy-related factor (DCRF) has been iden-
tified as a key regulator of autophagy in diabetic car-
diomyopathy. DCRF is highly expressed under diabetic 
conditions and sponges miR-551b-5p, leading to elevated 
PCDH17 levels and enhanced autophagy in glucose-
treated cardiomyocytes [273]. In a more recent study, 
lncRNA GAS5 was reported to reverse the inhibition of 
autophagy in the myocardial cells of diabetic rats [274]. 
Moreover, another study found that lncRNA H19 sup-
presses autophagy in cardiomyocytes; knockdown of H19 
promoted autophagy by upregulating the expression of 
DIRAS3 [223]. These findings emphasize the critical role 
of lncRNAs in modulating autophagy and apoptosis in 
the context of diabetic cardiomyopathy.

LncRNAs modulating autophagy in immune 
and inflammatory related diseases
Autophagy is a vital cellular process involved in regulat-
ing immune responses and maintaining inflammatory 
homeostasis. Defective autophagy has been implicated 
in the pathogenesis of several autoimmune and chronic 
inflammatory diseases, including asthma, osteoarthritis, 
chronic kidney disease, systemic lupus erythematosus, 
and Crohn’s disease. Impaired autophagy can lead to the 

Fig. 5 Regulation of autophagy by lncRNAs in cardiovascular diseases. This figure depicts the role of various lncRNAs in the modulation 
of autophagy and their involvement in cardiovascular disease pathogenesis. In the context of atherosclerosis, lncRNAs such as MALAT1, GAS5, 
TUG1, CTBP1‑AS2, FA2H‑2, ZNF295‑AS1, and LOC107986345 have been identified as key regulators of autophagic processes, influencing disease 
development and progression. Similarly, in myocardial infarction, lncRNAs including CAIF, H19, DANCR, XIST, NEAT1, and MIRF are implicated 
in the regulation of autophagy, contributing to the etiology of the disease. This network of lncRNAs underline their critical role in modulating 
autophagic pathways and their potential impact on cardiovascular disease mechanisms

Fig. 6 LncRNAs regulating autophagy in various inflammatory 
diseases. Various lncRNAs are known to modulate the autophagy 
in different inflammatory diseases such as osteoarthritis, asthma, 
periodontitis, lupus nephritis, chronic kidney and pulmonary 
diseases. These lncRNAs exert their influence on key autophagic 
processes such as autophagosome formation, lysosomal function, 
and the degradation of misfolded proteins. This figure highlights 
the intricate roles of lncRNAs in modulating autophagic flux, 
exhibiting their potential as therapeutic targets for the treatment 
of inflammatory related diseases
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accumulation of damaged cellular components, thereby 
activating inflammatory signaling pathways and causing 
immune dysregulation [275, 276]. Targeting autophagy-
related pathways has emerged as a promising therapeu-
tic strategy for the management of chronic inflammatory 
and autoimmune conditions (Fig. 6).

Osteoarthritis (OA) is one of the most prevalent 
chronic musculoskeletal diseases, significantly impact-
ing patients’ quality of life. Therefore, understanding 
the underlying biological mechanisms is essential for 
improving the diagnosis and treatment of OA [277, 278]. 
LncRNAs, which play a crucial role in regulating various 
genes, have been found to influence the progression of 
osteoarthritis by modulating autophagy in chondrocytes 
[185, 186, 188, 190, 192, 193]. A 2018 study reported that 
lncRNA-CIR was overexpressed in OA patients, posi-
tively regulating autophagic genes such as LC3B-I/II and 
Beclin-1, while negatively affecting the overall progres-
sion of OA [189]. Additionally, research by Song et  al. 
demonstrated that lncRNA-GAS5 increased chondro-
cyte apoptosis and decreased autophagy by downregu-
lating autophagy-related genes, including ATG-7, LC3B, 
and Beclin-1 [195]. This same lncRNA was also found to 

interact with miR-144, ultimately regulating the expres-
sion of mTOR [194]. Furthermore, the lncRNA HOTAIR 
has been shown to promote apoptosis and suppress 
autophagy in chondrocytes in knee OA [187]. These find-
ings provide valuable insights into the molecular mecha-
nisms of OA and have the potential to contribute to the 
development of novel therapeutic strategies for treating 
this disease.

In addition to osteoarthritis, LncRNAs have been 
shown to influence autophagy in various other inflam-
matory conditions [181, 279]. In 2019, Yu TX et  al. 
reported that overexpression of the lncRNA H19 can 
inhibit autophagy in mucositis [280]. Similarly, upregula-
tion of another lncRNA, MANTIS, was found to inhibit 
autophagy in HUVECs injury in  chronic kidney disease 
[182].  Additionally, lncRNA LINC00987 was shown to 
suppress autophagy in BEAS-2B cells during studies of 
chronic obstructive pulmonary disease [183]. Conversely, 
lncRNAs have also been observed to promote autophagy 
in the context of periodontitis. For example, the lncRNA 
FER1L4 was found to induce autophagy in periodon-
tal ligament stem cells under external compressive force 
[198]. Similar pro-autophagic effects were observed for 

Fig. 7 Autophagy‑regulating lncRNAs in neurological diseases. Long non‑coding RNAs (lncRNAs) have emerged as key modulators of autophagy 
in neurodegenerative disorders, particularly Alzheimer’s and Parkinson’s diseases. In Alzheimer’s disease, lncRNAs such as BACE1‑AS, MIR600HG, 17A, 
RMRP, and LINC01311 have been implicated in the regulation of autophagy‑related pathways, influencing the progression of the disease. Similarly, 
in Parkinson’s disease, lncRNAs including OIP5‑AS1, NEAT1, HOTAIR, SNHG1, and BDNF‑AS are involved in the regulation of autophagy genes, 
contributing to neuronal dysfunction and disease pathology
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lncRNA H19 in periodontitis [197]. These findings high-
lights the importance of understanding the complex reg-
ulatory roles of lncRNAs in autophagy, which could lead 
to the development of novel therapeutic strategies for 
treating a wide range of inflammatory diseases.

LncRNAs modulating autophagy in neurological 
diseases
Autophagy is an important component in preserving 
cellular processes by eliminating damaged proteins and 
organelles. Accumulating evidence has implicated the 
deregulation of autophagy in the pathogenesis of vari-
ous neurological diseases, including Alzheimer’s, Parkin-
son’s, and Huntington’s diseases [21, 22]. Recent studies 
have revealed the association of lncRNAs in modulating 
autophagy pathways, providing new insights into the 
molecular mechanisms underlying neurological disor-
ders (Fig. 7).

Alzheimer’s disease is recognized as the most severe 
and significant cause of dementia in the aging popula-
tion, posing a major public health concern, particularly 
in countries with a high proportion of elderly individu-
als. The etiology of Alzheimer’s disease remains conten-
tious; however, it is generally attributed to a combination 
of genetic and environmental factors [281, 282]. Recent 
studies have found lncRNAs to be linked with Alzhei-
mer’s disease and they have also been stated to affect 
autophagy in disease models and cell lines [201–203]. For 
instance, the lncRNA 17A has been reported to inhibit 
autophagy when overexpressed, whereas its knockdown 
results in enhanced autophagy [200]. Similarly, lncRNA 
NEAT1 has been shown to inhibit PINK1-dependent 
autophagy by promoting NEDD4L-mediated degradation 
of PINK1 [283]. Additionally, another lncRNA, BACE1-
AS, was found to exacerbate Aβ1–42-induced cellular 
injury in Alzheimer’s disease by upregulating autophagy. 
This effect was mediated by its function as a ceRNA for 
miR-214-3p, thereby influencing the expression of ATG5 
[32]. These findings provide valuable insights into the 
molecular mechanisms underlying Alzheimer’s disease 
and may open new avenues for future research aimed 
at understanding the disease’s pathogenesis, as well as 
developing novel preventive and therapeutic strategies. 
Further, lncRNA BACE1-AS was found to modulate the 
levels of miR-214-3p, thereby regulating the isoflurane-
induced neurotoxicity in Alzheimer’s disease [284].

Approximately 1% of individuals over the age of 60 
are affected by Parkinson’s disease globally. The etiology 
of Parkinson’s disease is attributed to a combination of 
aging, genetic predisposition, and environmental fac-
tors [285, 286]. LncRNAs are crucial in brain develop-
ment and synapse formation, and a study has shown that 
over 87 lncRNAs exhibit significantly altered expression 

levels in patients with Parkinson’s disease. This differen-
tial expression impacts autophagy in neuronal cells as 
well [287]. The lncRNA BDNF-AS has been shown to 
enhance MPP + -induced autophagy in Parkinson disease 
cell model by targeting miR-125b-5p [211]. Similarly, the 
lncRNAs HOTAIR and NEAT1 also promoted autophagy 
in Parkinson disease cell  models[206, 207]. In contrast 
to these autophagy enhancers, Qian et  al. identified the 
lncRNA SNHG1, an autophagy suppressor, where its 
downregulation led to increased autophagy in Parkinson 
disease cell model [212]. Further, the lncRNA OIP5-AS1 
indirectly regulated autophagy through the modulation 
of PLK2/α-synuclein interactions [204]. Given their sig-
nificant impact on brain function, lncRNAs are key to 
understand the pathogenesis and progression of Parkin-
son’s disease [205, 208–210, 212]. The insights gained 
from studying these lncRNAs could inform strategies 
for the prevention and treatment of Parkinson’s dis-
ease. Understanding the intricate relationship between 
autophagy and neurological disorders presents oppor-
tunities for developing innovative therapeutic strategies 
aimed at restoring autophagy functionality and mitigat-
ing disease-related pathology. Further research is nec-
essary to elucidate the specific mechanisms underlying 
autophagy dysregulation and to translate these findings 
into effective therapeutic interventions for neurological 
disorders.

LncRNAs modulating autophagy in other diseases
LncRNAs recognized as master regulators, play a crucial 
role in the autophagy processes involved in various dis-
eases. Tuberculosis (TB), which affects approximately 10 
million people annually, is one of the most devastating 
infectious diseases worldwide [288]. Research has indi-
cated that the autophagy of macrophages is a key factor in 
the pathogenesis of Mycobacterium tuberculosis (MTB) 
[289] making lncRNAs, which regulate autophagy, a 
focus of recent studies aimed at understanding TB patho-
physiology [215, 217]. For example, a 2019 study by Li M. 
et  al. demonstrated that the downregulation of lncRNA 
PCED1B-AS1 led to reduced apoptosis and enhanced 
autophagy in macrophages during TB [290]. Similarly, 
downregulation of lincRNA EPS had comparable effects 
on RAW264.7 macrophages [216]. Given the critical role 
of macrophages in eliminating the TB bacterium, these 
findings could be instrumental in developing novel thera-
peutic strategies against TB. LncRNAs are also increas-
ingly recognized for their roles in liver diseases, including 
hepatitis C and nonalcoholic fatty liver disease (NAFLD), 
both of which are of significant concern due to their 
complex pathogenesis and severe prognosis. For instance, 
a study by Ferrasi et  al. identified a distinctive lncRNA 
expression profile in hepatic tissues at various stages of 
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fibrosis and hepatocellular carcinoma (HCC), revealing 
novel tumor suppressor lncRNAs as potential diagnostic 
markers and therapeutic targets in early liver injury and 
HCC development, particularly in the context of hepa-
titis C infection [291]. Moreover, recent research on the 
lncRNA Neat1 in liver fibrosis has observed the upregu-
lation of Neat1 in fibrotic liver tissues with the activation 
of hepatic stellate cells, which are central to fibrosis [292]. 
Neat1 modulates cytohesin 3 expression by sponging 
miR-148a-3p and miR-22-3p, offering insights into liver 
fibrogenesis and potential lncRNA-directed therapies for 
liver fibrosis. In the context of NAFLD, a pivotal study 
identified four autophagy-related lncRNAs—PSMG3-
AS1, MIRLET7BHG, RP11-136K7.2, and LINC00925—
as key components in the complex network of ceRNAs. 
These lncRNAs interact within cellular RNA networks to 
regulate gene expression, influencing the progression of 
NAFLD and providing new directions for research and 
therapeutic strategies [293]. Additionally, research on 
chronic pancreatitis has highlighted the role of Lnc-PFAR 
in the activation of pancreatic stellate cells and pancreatic 
fibrosis via RB1CC1-induced autophagy, suggesting its 
potential as a therapeutic target. [294]. Collectively, these 
studies enhance our understanding of how lncRNAs 
modulate autophagy across various diseases, not only 
broadening our knowledge of their regulatory functions 
but also opening new avenues for targeted therapeutic 
interventions.

Clinical implications of lncRNAs
LncRNAs have emerged as pivotal elements in mod-
ern medicine, transcending their basic cellular roles to 
become central in both therapeutic and diagnostic appli-
cations. Their involvement in diverse diseases as accu-
rately described in this review, ranging from cancer to 
neurological disorders, emphasize their unique poten-
tial in personalized medicine. Current clinical studies 
and trials are examining the role of lncRNAs not only as 
diagnostic markers but also as therapeutic agents capa-
ble of modifying disease outcomes. Significantly, lncR-
NAs have been linked to the regulation of autophagy, a 
cellular process crucial for maintaining cellular homeo-
stasis and responding to stress. This connection suggests 
their influential role in disease progression and treatment 
outcomes. The dual functionality of lncRNAs in diag-
nostics, as biomarkers for early disease detection, and in 
therapeutics, as targets or agents in disease management, 
highlights their versatility and the necessity for ongoing 
research to harness their full clinical potential.

LncRNAs in the clinical management of cancer
The clinical landscape of cancer diagnosis and therapy 
is increasingly recognizing the crucial role of lncRNAs. 
As biomarkers, lncRNAs like H19 and PCA3 are gaining 
prominence for their predictive accuracy in early cancer 
detection and prognosis assessment [295, 296]. Other 
studies have shown that the presence of DSCAM-AS1, 
and GATA3-AS1 correlates with disease progression in 
breast cancer, offering valuable insights for personalized 
treatment strategies [297]. Furthermore, the therapeu-
tic applications of lncRNAs are advancing, with several 
entering clinical trials to evaluate their efficacy in tar-
geted therapy protocols. For instance, targeting lncRNA 
H19 has shown promising results in reducing tumor 
growth and metastasis in anaplastic thyroid cancer, high-
lighting its potential as a clinical molecular therapy tar-
get [298]. Similarly, the association of lncRNA MALAT1 
with tumor growth and metastasis in colorectal cancer 
positions it as both a diagnostic marker and a therapeutic 
target, reflecting its dual role in cancer management [299, 
300]. Beside the relevant insights underlying the potential 
of lncRNAs for cancer treatment, they have been actively 
explored in clinical trials, marking a significant transi-
tion towards more targeted treatments. For example, 
the clinical trial [301] investigates the diagnostic capa-
bilities of lncRNA MFI2-AS1 in kidney cancer, aiming to 
establish it as a reliable biomarker for early detection and 
disease progression. Similarly, [302] examines lncRNAs 
WRAP53 and UCA-1 in hepatocellular carcinoma as 
potential diagnostic biomarkers. UCA-1 is a well-docu-
mented lncRNA that is overexpressed in several cancers, 
including bladder and breast cancers. It promotes tumor 
growth, metastasis, and chemotherapy resistance by 
modulating key signaling pathways and gene expression. 
Clinically, UCA-1 serves as a potential biomarker for 
diagnosis and prognosis, particularly in urothelial carci-
noma where it can help in distinguishing malignant from 
benign conditions [303]. The role of UCA-1 in confer-
ring drug resistance also presents a unique opportunity 
for targeted therapy, where downregulating UCA-1 could 
enhance the responsiveness of tumors to chemotherapy 
[304, 305]. Another notable trial, [306], evaluates the 
safety and efficacy of INT-1B3, an RNA mimic agent, in 
treating advanced solid tumors. These mentioned clini-
cal trials highlight the evolving role of lncRNAs in preci-
sion oncology, offering promising new avenues for cancer 
diagnosis and treatment.

LncRNAs in the clinical management of cardiovascular 
diseases
In cardiovascular medicine, lncRNAs are gaining recog-
nition as valuable diagnostic biomarkers and therapeu-
tic agents. They have been shown to play a crucial role 
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in diagnosing conditions like heart failure, acute myo-
cardial infarction (AMI), and diabetic cardiomyopathy. 
Emerging studies highlight the potential of lncRNAs to 
provide new therapeutic approaches by targeting specific 
pathways involved in cardiac repair and regeneration 
[307, 308]. For instance, lncRNA-NRF levels were signifi-
cantly higher in patients with heart failure demonstrating 
its high diagnostic potential as biomarker for heart fail-
ure post-AMI [309]. On the other side, a study by Gon-
zalo-Calvo et al. identified other lncRNAs like LIPCAR, 
MIAT, and SENCR with considerable potential in diag-
nosing diabetic cardiomyopathy [310]. From a therapeu-
tic point of view, ncRNA-targeted treatments are making 
strides in cardiovascular diseases and show potential in 
moving from animal models to human clinical applica-
tions. Clinical trials such as [311] and [312] are exploring 
miRNA-based strategies for heart failure. In hyperlipi-
daemia, inclisiran, a kind of ncRNA targeting PCKS9, 
demonstrated significant LDL cholesterol reduction 
in the ORION trials [313], showcasing the therapeutic 
potential of lncRNA-targeted treatments in cardiovas-
cular conditions. Clinical trials are now exploring how 
lncRNA-targeted therapies could reduce myocardial 
injury and improve recovery [314, 315]. In this context, 
lncRNA CoroMarker has been specifically identified and 
used as a biomarker for diagnosing coronary artery dis-
ease (CAD). It has been tested in clinical settings and 
has shown to provide higher sensitivity and specificity 
compared to traditional biomarkers for CAD, making it 
a valuable tool for early diagnosis and management of 
this condition [316]. Furthermore, MIAT has been stud-
ied as a biomarker for predicting the risk of myocardial 
infarction. Its expression levels are significantly altered 
in patients following a myocardial infarction, and it has 
potential clinical applications in assessing patient risk 
and guiding treatment strategies to prevent heart failure 
post-infarction [317].

Clinical applications of lncRNA in neurological and other 
diseases
LncRNAs hold significant promise as diagnostic mark-
ers in the context of neurological diseases, particularly in 
Alzheimer’s and Parkinson’s diseases. Their role extends 
to therapeutic applications, where modulation of spe-
cific lncRNAs has been linked to improved outcomes in 
neurodegenerative disorders. Through high-throughput 
analysis, Huaying et al. revealed a signature of five lncR-
NAs closely associated with Alzheimer’s disease pro-
gression showing promise as potential biomarkers for 
early diagnosis of the disease [318]. In a similar frame, 
Firat et  al. identified novel panels of brain-enriched 
lncRNAs, differentially expressed in patients, as poten-
tial biomarkers for early Alzheimer’s disease and other 

dementias [319]. Furthermore, Feng et al. found that the 
plasma level of lncRNA BACE1 were significantly higher 
in Alzheimer’s disease patients suggesting its utility as a 
diagnostic tool with high specificity [320]. Similarly, Sim-
chovitz et al. found lncRNA LINC-PINT in elevated lev-
els in the substantia nigra of patients affect by Parkinson’s 
disease, suggesting its involvement in neurodegenerative 
processes and potential as a biomarker [321].

Beyond neurological conditions, lncRNAs are emerg-
ing as crucial in diagnosing and clinical monitoring in 
liver diseases. A comprehensive review by Zeng et  al. 
highlights the emerging role of lncRNAs like NEAT1, 
MEG3, MALAT1 as non-invasive biomarkers in NAFLD 
[322]. In the same frame, Shoraka et al. investigated the 
clinical potential of lncRNA-ATB in hepatitis B virus 
(HBV)-related cirrhosis and chronic hepatitis B (CHB). 
They revealed that elevated plasma levels of lncRNA-ATB 
are significantly associated with HBV-related cirrho-
sis, demonstrating its specificity as a biomarker for this 
condition [323]. Additionally, the same  study also  finds 
that lncRNA-ATB levels are lower in non-cirrhotic CHB 
patients compared to healthy controls, suggesting its sen-
sitivity in diagnosing CHB. This highlights the great clini-
cal value of lncRNA-ATB for diagnostic purpose of liver 
diseases. Furthermore, BACE1-AS has been examined 
and tested, particularly in the context of its potential as a 
therapeutic target for Alzheimer’s disease. Research into 
BACE1-AS involved understanding its regulatory role on 
BACE1, an enzyme critical in the formation of amyloid-
beta peptides, which are implicated in Alzheimer’s dis-
ease pathology [324].

Conclusion, challenges and future perspectives
Autophagy is a complex biological process that is cru-
cial in maintenance of cellular homeostasis. Aberrations 
in the autophagy process have been associated with the 
pathogenesis of various chronic diseases, including can-
cer, neurodegenerative disorders, metabolic syndrome, 
and inflammatory conditions. Understanding the mech-
anisms underlying autophagy and its impact on disease 
progression provides valuable insights for developing 
novel therapeutic strategies. LncRNAs exert their regu-
latory functions through diverse mechanisms, including 
remodelling of chromatin, transcriptional regulation, 
post-transcriptional modulation, and protein interac-
tion. In the context of autophagy, lncRNAs have been 
shown to influence autophagy flux, autophagosome 
formation, lysosomal function, and autophagy-related 
signaling pathways. By modulating autophagy-related 
genes, interacting with autophagy machinery compo-
nents, and affecting the expression of miRNAs, lncRNAs 
play diverse roles in autophagy regulation. Perturbations 
in lncRNA-mediated autophagy regulation have been 
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observed in these diseases, suggesting their potential 
involvement in disease pathogenesis. For instance, altered 
expression of lncRNAs such as MALAT1, HOTAIR, and 
MEG3 has been reported in cancer and linked to dis-
rupted autophagy, contributing to tumor progression or 
therapy resistance. LncRNAs are hailed as crucial mod-
ulators of gene expression, regulating varied biological 
process of development, differentiation, immunity and 
homeostasis. Hence, it could not be denied that lncRNAs 
also play a crucial role in autophagic process in various 
diseases. In recent years, significant advancements in 
the field of lncRNAs have led to a growing comprehen-
sion of the intricate relationship between disease-asso-
ciated lncRNAs and autophagy. For example, the role of 
lncRNAs in cancer appears to be multifaceted, largely 
due to the dual function of autophagy in tumor progres-
sion. Functionally, studies have demonstrated that many 
lncRNAs regulate autophagy primarily through ceRNA 
mechanisms, sequestering specific autophagy-related 
miRNAs. However, lncRNAs also exhibit a more complex 
involvement in autophagy regulation, influencing pro-
cesses such as histone and chromatin modifications, tran-
scriptional regulation, and protein–protein interactions, 
which must be further studied and explored. Our under-
standing of lncRNA function remains limited due to their 
low expression levels, poor sequence conservation, and 
unpredictable roles. However, two key points highlight 
the need for further investigation of lncRNAs in different 
regions such as cardiovascular system, lungs, and blood. 
First, most disease-associated genetic variants are located 
within noncoding regions, where lncRNAs are prevalent. 
Second, growing evidence suggests that lncRNAs play 
significant roles in regulating cellular homeostasis, both 
in its preservation and disruption. Given the close associ-
ation between lncRNAs and autophagy, there is potential 
for the development of lncRNA-based strategies aimed at 
monitoring or modulating the autophagic flux.

Understanding the functional roles of lncRNAs pre-
sents a significant challenge. In contrast to miRNAs, 
which possess distinct sequence characteristics such as 
seed sequences and well-defined mechanisms of action 
including mRNA destabilization or translational inhibi-
tion, the functionality of lncRNAs is seldom elucidated 
by predictable sequence patterns. Moreover, determin-
ing the subcellular localization of lncRNAs is crucial for 
functional analysis. For instance, lncRNAs are known for 
various interactions, including RNA–RNA, RNA–DNA, 
and RNA–protein. However, identifying a cytoplasmic 
localization would prioritize investigations into RNA–
RNA or RNA–protein interactions over RNA–DNA 
interactions [325]. Hence, the primary challenge lies in 
selecting specific lncRNAs for further investigation from 
the hundreds identified in an RNA-sequencing analysis. 

With a moderate sequencing depth of approximately 10 
million reads, most lncRNAs exhibits a basal expression 
level of fewer than 5 fragments per kilobase of transcript 
per million mapped reads [325]. Initial experiments 
commonly involve validating the expression levels of a 
lncRNA through quantitative RT-PCR in the same cells 
or tissues used in the RNA-sequencing analysis. Subse-
quent expression studies should encompass a range of cell 
types (with or without agonists or other stimuli) and tis-
sue types to understand the tissue-specific characteristics 
of lncRNAs. A significant hurdle in analyzing lncRNA 
expression is their typically low abundance relative to 
mRNAs, often resulting in cycle threshold (Ct) values of 
35 or higher for most lncRNAs. One possible explanation 
for the low expression levels of lncRNAs is that it may 
result from transcriptional noise lacking inherent bio-
logical significance [326]. Alternatively, low-abundance 
lncRNAs could serve functional roles in cis regulatory 
networks, such as by regulating transcriptional activ-
ity either directly or indirectly such as sequestering key 
transcription factors, scaffolding chromatin remodeling 
complexes, or facilitating the formation of RNA–DNA 
triplex structures [327]. Further, the detection and quan-
tification of lncRNAs is also challenging in tissues; the 
expression levels of most lncRNAs are often too low to be 
detected through in situ hybridization in tissue sections 
[325]. Firstly, identifying the localization of lncRNAs is 
an essential step in understanding their functional roles. 
Secondly, elucidating the structure of lncRNAs is vital 
for deepening our comprehension of both their conser-
vation and their functional roles [328]. Recent advance-
ments in techniques, such as RIC-seq and icSHAPE, have 
provided valuable insights into the secondary and higher-
order structures of lncRNAs [329, 330].

Despite their potential, RNA-based therapies compris-
ing lncRNAs encounter significant obstacles. For exam-
ple, in case of neurological diseases, one major challenge 
is the inability of most RNA-targeted drugs to cross the 
blood brain barrier, necessitating intrathecal injection for 
delivery to the central nervous system, a highly invasive 
approach that limits their clinical application. Addition-
ally, while lncRNAs are known to perform diverse bio-
logical functions with complex mechanisms of action, 
current research largely focuses on identifying associ-
ated miRNAs or binding proteins. Furthermore, lncR-
NAs exhibit poor conservation across species, adding 
another layer of complexity to their study. Incorporating 
knowledge of lncRNAs alongside protein-coding genes 
and other non-coding genes is essential for elucidat-
ing the comprehensive landscape of signaling and tran-
scriptional mechanisms that govern normal homeostatic 
processes including autophagy. Additionally, this inte-
grated approach is crucial for understanding how these 
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finely regulated systems are disrupted in pathological 
conditions.
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