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Abstract 

Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over 
the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initia-
tion, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the pri-
mary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical stud-
ies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments 
in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clini-
cal evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related mark-
ers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide 
future research on CAFs and advocate for clinical investigations targeting CAFs.
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Introduction
The tumour microenvironment (TME) has emerged as 
a pivotal player in cancer development and drug resist-
ance. With the introduction of the "seed and soil" theory 
in 1989 by Stephen Paget [1], the significance of TME has 
grown considerably. Substantial evidence now indicates 

that diverse cell populations within tumours create a 
supportive environment for the survival, growth, and 
metastasis of cancer cells. In line with the "seed and soil" 
theory, tumour cells ("seed") preferentially grow in organs 
with a suitable microenvironment ("soil"), leading to a 
non-random distribution of metastasis among organs. It 
is now widely accepted that cancer behaviours are regu-
lated by both intrinsic factors and the intricate TME. The 
TME constitutes a complex and dynamic niche formed 
by various cellular and molecular components engag-
ing in communication and interactions with cancer cells. 
Through these inter-TME dialogues and crosstalk with 
cancer cells, the TME provide a nurturing and protective 
environment for cancer cells.

The TME involves two major cellular components: 
immune cells and stromal cells. TME immune cells 
include myeloid-derived suppressor cells (MDSC), 
tumour-associated macrophages (TAMs), tumour-asso-
ciated neutrophils, regulatory T (Treg) cells, natural 
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killer cells, dendritic cells, B cells, effector T cells and T 
helper cells. The roles of these immune cells in the TME 
and cancer development have been thoroughly reviewed 
elsewhere [2–6], and will not be discussed here. The 
other large proportion of cells within TME are stromal 
cells, and the tumour-stroma ratio has shown promise as 
a prognostic biomarker for certain cancer types in clini-
cal settings [7–11]. TME stromal cells include endothelial 
cells (blood vessels), as well as inter-related cancer-asso-
ciated fibroblasts (CAFs), mesenchymal stromal cells 
(MSCs), and pericytes, which all share certain character-
istics and plasticity, being able to interconvert and differ-
entiate into different cell types [12, 13]. The roles of these 
broad tumour stromal cells have been comprehensively 
reviewed by Xu and colleagues [14].

CAFs, a subtype of activated fibroblasts, are the most 
abundant and prominent cell population within the 
tumour stroma. Research into CAFs has surged over 
the past decade, greatly advancing our understanding of 
their roles in the TME and potential as therapeutic tar-
gets. CAFs have been shown to play multiple essential 

roles in cancer initiation, progression, and metastasis, 
through interaction and communication with cancer cells 
or regulating extracellular matrix (ECM) remodelling and 
immune cell infiltration (Fig.  1) [15–22]. In this review, 
we provide a summary of markers for identifying CAFs 
and their subtypes. Importantly, we conduct a compre-
hensive review of both completed and ongoing clinical 
trials associated with CAF-targeted therapies. We also 
discuss the existing challenges in CAF-related studies 
and proposes a direction for future research.

CAF‑related markers
Fibroblasts have long presented a challenge to define, 
given the absence of reliable markers specific to their cell 
lineage. Originating from the mesoderm during embry-
onic development, they share this mesenchymal lineage 
with adipocytes and bone cells including osteoblasts and 
chondrocytes. However, the few proteins that may infer a 
cell being a fibroblast are neither exclusive to fibroblasts 
alone nor uniformly present across all fibroblast subtypes 
[17, 23, 24]. Consequently, cells labelled as fibroblasts 

Fig. 1 CAFs regulate cancer development and progression through interactions and communication with various cell types within the tumour 
microenvironment by secreting a range of factors. Treg: regulatory T cell; MDSC: myeloid-derived suppressor cell; TAM: tumour-associated 
macrophage; DC: dendritic cells; NK cell: natural killer cell. The figure was generated using BioRender
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were often defined through negative selection—those 
lacking markers for epithelial, endothelial, and inflamma-
tory cells are presumed to be fibroblasts. In addition to 
the absence of such markers, the morphology and loca-
tion of fibroblasts are instrumental to identify them in the 
past. Fibroblasts exhibit an elongated, spindle-like, fusi-
form phenotype, characterised by a tapered structure at 
both ends and extended processes. Recent advancement 
in single-cell RNA sequencing (scRNA-seq) and imag-
ing techniques have identified several proteins highly 
expressed in fibroblasts within the TME, serving as posi-
tive markers for identifying CAFs [25]. It is important to 
note, however, that these markers may not be universally 
expressed by all CAFs across different cancer types. The 
heterogeneity and plasticity of CAFs play a critical role 
in their diverse functions within tumours. CAFs can be 
derived or transformed from various cell types such as 
mesenchymal cells, normal fibroblasts, quiescent stellate 
cells in the pancreas and liver. Efforts to identify CAFs 
within the tumour stroma have led to identification and 

application of various CAF-related markers. These mark-
ers have diverse roles in host, CAFs, and cancer cells as 
shown in preclinical studies (Table 1).

Fibroblast activation protein (FAP)
FAP, a membrane-bound serine protease belonging to 
the dipeptidyl peptidase (DPP) family, is commonly 
expressed by CAFs and certain tumour cells such as sar-
coma [26–28]. Additionally, FAP expression has been 
observed in fibroblasts participating in wound healing 
and chronic inflammatory conditions such as arthritis 
and cirrhosis [29–32]. The substantial upregulation of 
FAP is considered a biomarker for CAFs [33, 34], with 
potential as a unfavourable prognosis biomarker for vari-
ous cancers [35–38]. However, contradictory findings 
suggest that high FAP expression may correlate with a 
better prognosis in some patients [39, 40].

High FAP expression has been correlated with 
enhanced tumour growth and metastatic potential [41–
44]. FAP-positive  (FAP+) CAFs produce ECM proteins 

Table 1 General CAF-related markers and their phenotypes upon target deficiency in cancer

Markers Deficiency in host Deficiency in CAFs Deficiency in cancer cells Refs.

FAP Tumorigenesis ↓
Tumour growth ↓
Metastasis ↓
Apoptosis ↑

Tumour growth ↓
Metastasis ↓

Tumour growth ↓
Metastasis ↓

[23, 41–56, 204–207]

α-SMA – – Migration ↓
Invasion ↓

[57–65, 67, 68, 208]

PDGFRα/β – – Proliferation ↓
Cell death ↑

[77–85, 87–93]

Vimentin Tumour growth ↓
Invasion ↓
Metastasis ↓

Invasion ↓ Motility ↓ [98–103, 209]

PDPN Tumour growth ↓
Lymphatic metastasis ↓

Invasion ↓ Proliferation ↓
Migration ↓
Invasion ↓

[107, 110–112, 114–118, 210]

FSP-1 Tumorigenesis ↓ Stemness ↓ Invasion ↓
Metastasis ↓
Ferroptosis ↑

[126–131, 211]

TN-C Immune cell infiltration ↑
Tumorigenesis ↓
Tumour growth ↓
Metastasis ↓

Angiogenesis ↓ Migration ↓
Invasion ↓
Immunosuppression ↓

[133, 141–145, 147]

POSTN Tumorigenesis ↓
Immunosuppression ↓

Tumour growth ↓
Invasion ↓

Tumour growth ↓ [151, 153, 155–166]

Gal-1 Tumour growth ↓ Progression ↓
Migration ↓
Invasion ↓

Tumour growth ↓
Migration ↓
Invasion ↓

[168–178]

CAV1 Angiogenesis ↑
Tumour growth ↑

Tumour growth ↑
Migration ↑
Chemoresistance↑

Tumour growth ↓
Proliferation ↓
Migration ↓
Invasion ↓

[181–190]

Ephs/
ephrins

Angiogenesis ↓
Tumour growth ↓
Fibrosis ↓ Immunosuppression↑

Invasion ↓
Metastasis ↓
Fibrosis ↓

Tumour growth ↓↑
Proliferation ↓↑
Migration ↓↑
Invasion ↓↑

[191–203]
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that contribute to migration of tumour cells [45, 46]. In 
a transgenic mouse model, depletion of FAP-expressing 
cells led to rapid hypoxic necrosis mediated by interferon-
gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-
α), both associated with  CD8+ T cell-dependent tumour 
cell killing [47].  FAP+ CAF-induced immune suppression 
could also be mediated through the CXCL12-CXCR4 
axis, and inhibition of CXCR4 resulted in eradication 
of cancer cells by increasing intratumoral  CD8+ T cells 
[48]. Further insight into the role of FAP in the immu-
nosuppressive TME was revealed by a murine liver 
tumour model, demonstrating that  FAP+ CAFs medi-
ate immunosuppression through STAT3-CCL2 signal-
ling and recruitment of MDSCs [49]. Tumorigenesis and 
tumour growth were reduced in FAP knockout  (Fap−/−) 
mice in both lung and colon cancer models [50]. Global 
FAP knockout delayed the onset of pancreatic tumours, 
increased tumour necrosis, impeded metastasis, and pro-
longed mice survival in the KPC (LSL-KrasG12D/+;LSL-
Trp53R172H/+;Pdx-1-Cre) pancreatic cancer model [43]. 
Consistently, silencing FAP in CAFs was associated with 
impaired tumour-promoting effects in preclinical stud-
ies [51–54]. Interestingly, knockdown of FAP in cancer 
cells also led to reduced cell proliferation, invasion, and 
metastasis in oral squamous cell carcinoma (OSCC) and 
prostate cancer [55, 56]. These findings suggest that FAP 
may serve as a promising therapeutic target, in addition 
to its role as a CAF marker.

α‑Smooth muscle actin (α‑SMA)
α-SMA is another frequently used marker for activated 
fibroblasts. High expression of α-SMA in CAFs was asso-
ciated with poor prognosis of cancer patients [57–59]. 
CAFs with high α-SMA expression can stimulate growth 
of luminal breast cancer cells, primarily through the 
secretion of osteopontin (OPN) [57]. Tumours harbour-
ing CAFs with elevated α-SMA expression exhibited high 
metastatic potential [58]. Conversely, CAFs expressing 
low levels of α-SMA suppressed self-renewal and growth 
of stem-like cancer cells through the signalling mol-
ecule bone morphogenetic protein 4 (BMP4) [60]. The 
α-SMA+ CAFs can promote the generation and prolifera-
tion of  CD44+CD24− breast cancer stem cells by secret-
ing CXCL12 that activates CXCR4 on cancer cells [61]. 
Conditioned medium from α-SMA+ CAFs enhanced 
tumorigenicity in a co-culture assay of hepatocellular car-
cinoma (HCC) [62]. This effect was attributed to α-SMA+ 
CAF-derived hepatocyte growth factor (HGF), regulat-
ing the c-Met/FRA1/HEY1 signalling pathway in HCC 
cells [62]. Additionally, α-SMA+ CAFs secret a range of 
cytokines, such as M-CSF, IL-6, IL-8, IL-10, TGF-β, and 
CCL-2, inducing macrophage differentiation and M2 
polarization that contributes to immunosuppressive 

TME [63–65]. These cytokines can also activate STAT3-
PDL1 signalling in neutrophils [66], further contributing 
to the establishment of a suppressive TME. Although the 
tumour-promoting roles of α-SMA + CAFs have been 
demonstrated in many cancers, they appear to have the 
opposite effect in pancreatic cancer. In a pancreatic can-
cer animal model, the deletion of α-SMA + CAFs led to 
an increase in CD4 + Foxp3 + regulatory T cells within 
the tumours, resulting in accelerated tumour growth 
[67]. This may be due to the tumour-restricting role of 
the stroma, which acts as a physical barrier to limit the 
growth of pancreatic cancer cells and the infiltration of 
tumour-supporting immune cells. In fact, deletion of 
Sonic hedgehog (SHH) in a pancreatic ductal adeno-
carcinoma (PDAC) model also reduced stromal content 
and led to increased tumour growth [68]. These findings 
suggest that while eliminating α-SMA + CAFs could be 
a promising strategy to inhibit tumour growth in many 
cancer types, it should be carefully evaluated when treat-
ing pancreatic cancer.

Platelet‑derived growth factor receptor α/β (PDGFRα/β)
PDGFRα/β, a tyrosine kinase receptor, functions through 
the formation of homodimers (αα or ββ) or heterodi-
mers (αβ), each exhibiting distinct interactions with 
PDGF ligand dimers, ultimately leading to activation 
of various signalling pathways [69–71]. PDGFR signal-
ling plays a crucial role in development of organs, such 
as lung and kidney [72–74]. As a less specific marker for 
CAFs, PDGFRα/β is also expressed in normal fibroblasts, 
smooth muscle cells, and pericytes [75, 76]. High expres-
sion of PDGFRβ in tumour stroma was associated with 
large tumour size, advanced stage, and high vessel density 
in prostate cancer [77]. Elevated levels of PDGFRβ were 
associated with an increased risk of recurrence in breast 
and colorectal cancers [78, 79]. However, in patients with 
epithelial ovarian cancer, high PDGFRα/β expression in 
both tumour and stromal cells did not show prognostic 
significance [80].

Increased PDGFRα/β activity was observed in sarcoma 
cancer stem-like cells, promoting migration, invasion, 
and chemoresistance [81]. PDGFRα can interact with 
integrin α5β1 to promote cell contraction and reorgani-
zation of the ECM, resulting in directional migration of 
prostate and pancreatic cancer cells [82]. Integrin α11 
also binds to PDGFRβ on CAFs, leading to increased 
invasion of breast cancer cells [83]. PDGFRβ+ CAFs, 
when stimulated by PDGF, can enhance migration and 
invasion of co-cultured colorectal cancer cells in a stan-
niocalcin-1-dependent manner [84]. By interacting with 
TGFβR, PDGFRβ can induce differentiation of MSCs 
into CAFs [85]. In a pancreatic cancer mouse model, 
PDGFRα+ CAFs accelerated tumour proliferation, in 
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contrast to normal pancreatic fibroblasts that impeded 
tumour progression. Further categorization of PDGFRα+ 
CAFs revealed that PDGFRα+/SAA3 (Serum Amyloid 
A3)+ CAFs could enhance PDAC progression, whereas 
PDGFRα+ CAFs without SAA expression suppress 
tumour growth, attributed to Mpp6 overexpression [86].

The immunomodulatory effects of PDGFRα/β+ CAFs 
have also been well-documented in several studies. 
PDGFRα+ CAFs secrete Chitinase 3-like 1 to induce 
macrophage recruitment and M2 polarization in breast 
cancer [87]. In a co-culture assay, T cells, in the presence 
of PDGFRα/β+PDPN (podoplanin) + CAFs, exhibited 
low cytotoxicity towards co-cultured tumour cells [88]. 
The reduced T cell cytotoxicity could be resulted from 
increased apoptosis of FAS-expressing  CD8+ T cells, a 
process mediated through the expression of FAS ligand 
and programmed death-ligand 2 (PD-L2) by CAFs [88]. 
Interestingly, high PDGFRα expression in CAFs was also 
associated with increased immune infiltration, potent T 
cell cytotoxicity, and prolonged survival in PDAC [89], 
highlighting the complex roles of PDGFRα/β in different 
contexts. Therefore, PDGFRα/β-targeted monotherapy 
may not be suitable for treating PDAC. In addition to 
its interesting roles in CAFs, PDGFR also plays a direct 
role in cancer cells. Knockdown or knockout of PDG-
FRA in gastrointestinal (GI) and glioblastoma (GBM) 
cancer cells suppressed tumour proliferation [90–92]. In 
BRCA1-deficient breast cancer cells, deletion of PDGFRβ 
promoted cell death and inhibited tumorigenesis [93]. 
PDGFRα/β could therefore serve as promising targets for 
direct anti-cancer therapy in treating these cancers.

Vimentin
Vimentin, a type III intermediate filament protein, serves 
as a major component of the cytoskeleton in non-epi-
thelial cells, particularly mesenchymal cells. While high 
vimentin expression was observed in CAFs, normal 
fibroblasts (NFs) also exhibited similar levels of vimentin 
[94]. Presence of α-SMA−Vimentin+ CAFs was associ-
ated with poor survival in PDAC patients [95], and high 
vimentin expression in tumour stroma was linked to high 
malignant potential and disease recurrence in colorectal 
cancer (CRC) patients [96]. Interestingly, another study 
found that low vimentin expression in stroma and high 
vimentin expression in cancer cells was associated with 
prolonged overall survival (OS) in patients with ovarian 
tumours [97].

Vimentin plays diverse roles in EMT, focal adhe-
sion, migration, invasion, and metastasis of cancer cells 
[98, 99], but knowledge on the function of vimentin in 
CAFs is limited. In a preclinical study employing a Cre-
dependent LSL-KrasG12D/Lkb1fl/fl lung cancer model, 
vimentin was expressed in CAFs surrounding collective 

invasion packs of epithelial tumour cells, and whole-
body vimentin knockout led to a reduction of invasion 
packs [100]. In a non-small cell lung cancer (NSCLC) 
model induced by LSL-KrasG12D/Tp53fl/fl, whole-body 
knockout of vimentin attenuated cancer-associated 
cachexia symptoms, inhibited tumour growth, and led 
to improved survival [101]. Vimentin also plays a direct 
role in cancer cells, as demonstrated by the observation 
of reduced cell motility in cancer cells upon vimentin 
knockdown [102, 103]. Future studies on the detailed 
function of  Vimentin+ CAFs will be beneficial to under-
stand their specific roles in cancer development.

Podoplanin (PDPN)
Podoplanin (PDPN) is a mucin-type protein with 
diverse physiological and pathological functions. 
PDPN-deficient mice displayed defects in blood-lym-
phatic vascular separation, impacting proper regulation 
of lymph flow [104, 105]. While high PDPN expression 
was predominantly found in lymphatic endothelium 
and often utilised as a marker for lymphatic vessels 
[106], elevated PDPN expression has been reported 
in CAFs and associated with poor outcomes in vari-
ous cancer types, including lung [107], breast [108], 
and pancreatic cancers [109]. The roles of  PDPN+ 
CAFs have been explored in several studies. In a col-
lagen invasion assay involving co-cultured cancer cells 
and CAFs,  PDPN+ CAFs created invasion tracks for 
lung cancer cells, and knockdown of PDPN in CAFs 
decreased invasion of both CAFs and cancer cells [110]. 
However, ectopic expression of PDPN in human fibro-
blasts did not affect the migratory and invasive prop-
erties of co-cultured breast cancer cells [111].  PDPN+ 
CAFs showed high expression of TGF-β and were asso-
ciated with  CD204+ TAM infiltration in stage-I lung 
squamous cell carcinoma, leading to the immunosup-
pressive TME [107]. Interestingly,  PDPN+ CAFs also 
exhibited a tumour-inhibitory effect by suppressing the 
proliferation of small cell lung cancer (SCLC) cells in 
a co-culture assay [112]. Another study suggested an 
association between  PDPN+ CAFs and prolonged dis-
ease-free survival (DFS) in CRC patients [113]. PDPN 
could also act as a co-inhibitory receptor on T cells, 
and T cell specific PDPN conditional knockout mice 
exhibited delayed tumour growth [114]. Macrophage-
specific PDPN conditional knockout mice showed 
reduced lymph angiogenesis and lymph invasion in 
breast cancer [115]. Knockdown of PDPN in cancer 
cells also resulted in reduced cell proliferation, migra-
tion, and invasion [116–118], suggesting the intricate 
roles of PDPN in cancer development.
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Fibroblast‑specific protein 1 (FSP‑1)
FSP-1, also known as S100A4, is a well-established 
marker for fibroblasts involved in tissue remodelling 
[119, 120]. Although FSP-1 is expressed in both CAFs 
and NFs, CAFs from cancer tissues generally exhibit 
more abundant FSP-1 expression than NFs from adja-
cent normal tissues [121]. Increased FSP-1 expression 
in CAFs was linked to EMT [122], and its presence was 
detected in inflammatory macrophages [123]. In CRC 
patients, high FSP-1 expression in CAFs was associated 
with tumour invasion [124]. Intriguingly, tumoral FSP-1 
positivity and stromal FSP-1 negativity was correlated to 
short DFS and OS in patients with invasive lobular carci-
noma [125].

FSP-1+ CAFs promote tumour metastasis by secret-
ing factors such as VEGF-A and Tenascin-C, establishing 
an angiogenic microenvironment at metastatic sites and 
providing protection from apoptosis [126]. In addition, 
monocyte chemotactic protein-1 derived from FSP-1+ 
CAFs increased monocyte recruitment and inflamma-
tory responses in a skin tumour model [127]. Mice with 
FSP-1 deficiency had decreased tumour incidence, and 
co-injection of FSP-1+ CAFs with mouse mammary car-
cinoma cells partially restored tumour development and 
metastasis [128]. However, depletion of FSP-1+ stromal 
cells did not prevent the development of hepatocellu-
lar carcinoma (HCC), although it reduced the stemness 
phenotype of tumours [129]. Head and neck squamous 
cell carcinoma (HNSCC) cells with FSP-1 knockdown 
exhibited reduced expression of matrix metalloprotein-
ase 3 (MMP3), resulting in decreased invasiveness and 
metastasis in vivo [130]. The loss of FSP-1 in cancer cells 
resulted in increased ferroptosis and cell death upon 
the treatment of ferroptosis-inducing agent [131]. These 
findings suggest that FSP-1 could be a promising anti-
tumour target, given its tumour-promoting roles in both 
CAFs and cancer cells.

Tenascin‑C (TN‑C)
TN-C, a glycoprotein interacting with ECM molecules 
like fibronectin [132], is abundantly expressed by CAFs 
and solid malignant tumours [133–135]. TN-C expres-
sion in the stroma of prostate cancer showed correla-
tion with the expression of other CAF markers, including 
FSP-1, α-SMA, and vimentin [135]. In pancreatic cancer, 
TN-C in CAFs can enhance epithelial-to-mesenchymal 
transition and is associated with resistance to immune 
checkpoint inhibitors in patients [136]. High tumoral 
TN-C expression could be associated with tumour pro-
gression, metastasis, and poor prognosis in different 
cancer types [137–140]. TN-C produced by CAFs pro-
moted metastasis of colon cancer cells in response to 
TGF-β signalling [133]. In an osteosarcoma xenograft 

model, TN-C contributed to lung metastasis by inter-
acting with its receptor integrin α9β1 [141]. TN-C also 
promoted immune suppression by immobilising infil-
trated T lymphocytes through chemokine (C-X-C motif ) 
ligand 12 (CXCL12) signalling [142]. Moreover, TN-C 
increased infiltration of Treg cells, and ablation of TN-C 
inhibited immune-suppressive stromal properties in 
an OSCC model [143]. TN-C knockout mice exhibited 
increased immune cell infiltration and reduced tumori-
genesis, tumour size, and tumour metastasis compared to 
wild type mice [143, 144]. Knockdown of TN-C in CAFs 
led to increased endothelial tubulogenesis of glioblas-
toma [145], and TN-C knockout in tumour cells reduces 
lymphoid immune suppression, migration, and inva-
sion of osteosarcoma and OSCC [140, 143]. A recent 
study found that reducing TN-C expression in cancer 
cells can enhance the efficacy of inhibitors targeting the 
ErbB3, PI3K-AKT, Ras, and MAPK signalling pathways 
in oesophageal squamous cell carcinoma [146]. More 
in-depth exploration of TN-C roles in cancer has been 
reviewed by others [147, 148].

Periostin (POSTN)
POSTN is a secreted cell adhesion glycoprotein that 
serves as a ligand for integrins αVβ3 and αVβ5. High 
expression of POSTN in CAFs was associated with poor 
prognosis in various cancers, including breast [149], cer-
vical [150], CRC [151, 152], oesophageal cancers (EAC) 
[153], and PDAC [154]. The colony number and spheroid 
size of CRC were significantly larger when co-cultured 
with Postn+/+ fibroblasts than when co-cultured with 
POSTN knockdown or knockout fibroblasts [151, 155]. 
When binding to integrin αVβ3, CAF-derived POSTN 
can activate PI3K/AKT signalling pathway, promoting 
EMT, migration and invasion of ovarian cancers and 
EAC [153, 156]. The ERK pathway can also be activated 
by CAF-derived POSTN, leading to enhanced prolifera-
tion, migration, and EMT of NSCLC and gastric cancer 
cells [157, 158]. Downregulating POSTN in the TME of 
PDAC reduced proliferation, metastasis, and clonality of 
PDAC cells [159]. POSTN also showed interaction with 
protein tyrosine kinase 7 in HNSCC to promote can-
cer stemness [160]. Through bindings to integrins αVβ3 
and αVβ5, POSTN can activate the ERK/NF-κB signal-
ling pathway in ovarian cancer cells, leading to increased 
expression of cytokines that promote macrophage mobil-
ity and polarization toward the M2 phenotype [161]. 
POSTN also induced expression of Programmed Cell 
Death Protein 1 (PD-1) on TAMs through integrin-ILK-
NF-κB signalling, and PD-1+ TAMs, in turn, produced 
IL-6 and IFN-γ, leading to induction of Programmed Cell 
Death Ligand 1 (PD-L1) expression on CRC cells [162]. 
POSTN knockout (Postn−/−) mice exhibited reduced 
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infiltration of PD-1-positive TAMs in CRC tumours [162] 
and displayed a lower tumorigenic potential [163, 164]. 
Intriguingly, Postn−/− mice demonstrated impaired cap-
sule formation and enhanced tumour growth in another 
study [165]. Tumoural POSTN may also contribute to 
tumour growth and knockdown of POSTN in lung can-
cer cells repressed tumour growth in  vivo [166]. These 
studies suggest the diverse roles of POSTN, underscoring 
its potential as a therapeutic target.

Galectin‑1 (Gal‑1)
Gal-1, a member β-galactoside-binding protein family, is 
ubiquitously expressed both intracellularly and extracel-
lularly, despite lacking a secretion signal peptide [167]. 
Gal-1 plays a crucial role in cell–cell and cell–matrix 
adhesion in the TME, and CAF-derived Gal-1 induced 
metastasis, EMT, and angiogenesis in gastric cancer [168, 
169]. TGF-β secreted from gastric cancer cells could 
transform NFs into CAFs by upregulating Gal-1 and 
α-SMA expression in fibroblasts [170]. Elevated Gal-1 
expression in CAFs contributed to adaptive resistance 
to tyrosine kinase inhibitors (TKIs) of anaplastic lym-
phoma kinase in NSCLC [171]. Knockdown of Gal-1 
in CAFs reduced the expression of monocyte chemoat-
tractant protein-1 (MCP-1) and inhibited the progres-
sion of OSCC in  vivo [172]. Gal-1 knockdown in CAFs 
also reduced migration and invasion of breast cancer 
cells by downregulating MMP9 expression [173]. Inter-
estingly, tumour-derived Gal-1 increased frequency of 
 CD4+CD25+Foxp3+ Treg cells in breast cancer [174], 
leading to an immunosuppressive TME. In addition, 
knockdown of Gal-1 in cancer cells reduced migration, 
invasion, and tumour growth [175, 176]. Gal-1 deficient 
mice exhibited impaired tumour growth due to inad-
equate tumour angiogenesis and a less immunosup-
pressive TME [177, 178]. In summary, Gal-1 serves as a 
marker for CAFs and presents itself as a promising target 
for cancer treatment.

Caveolin 1 (CAV1)
CAV1, a scaffolding protein crucial for the formation of 
caveolae, is involved in processes like endocytosis and 
receptor internalization [179], exhibiting both tumour-
suppressive and tumour-promoting properties [180]. In 
the transition of NFs into CAFs, CAV1 expression was 
significantly downregulated, making it a negative marker 
for CAFs [181]. Low expression of CAV1 in CAFs was an 
independent predictor of poor prognosis in gastric can-
cer patients [182]. CAFs with reduced CAV1 expression 
exhibited an enhanced glycolytic phenotype, promoting 
migration and progression of PDAC [183]. Knockdown 
of CAV1 in fibroblasts not only promoted tumour growth 
but also increased chemoresistance in PDAC and HCC 

[184, 185]. CAV1 deficiency in CAFs also led to increased 
production and secretion of pro-inflammatory and 
tumour-enhancing cytokines, contributing to prolifera-
tion and invasion of gastric cancer cells [186]. Moreover, 
CAV1-deficient mice exhibited increased tumour per-
meability, angiogenesis, and growth in different tumour 
models [187, 188]. Interestingly, knockdown of CAV1 
in cancer cells resulted in attenuated tumour growth, 
decreased proliferation, and impaired migration and 
invasion [189, 190], suggesting a tumour-promoting role 
of CAV1 in cancer cells. However, the detailed mecha-
nisms of how CAV1 regulates cancer cells remain to be 
investigated.

Ephs/ephrins
Eph receptors and their membrane bound ephrin ligands 
control cell–cell interactions during development, 
including tissue boundary formation and patterning 
of the neural and vascular systems, and are often up-
regulated in tumours and the TME, including on CAFs 
[191, 192]. Several Eph receptors have been identified 
as elevated in stromal cells from human gastric tumours 
compared to those from normal tissues, and expression 
of EphA2 was associated with poor prognosis [193]. In 
co-culture assays including CAFs and cancer cells, tyros-
ine phosphorylation of EphA2 on CAFs was increased, 
which led to enhanced invasiveness of cancer cells [194, 
195]. Similarly, ephrin-B on fibroblasts was found to 
increase invasiveness of EphB3/4-expressing prostate 
cancer cells [196]. EphA3 was identified to be widely 
expressed in the stroma of diverse cancer types, pre-
sent on MSCs and specific CAF subtypes in human and 
mouse tumours [197, 198]. Antibody targeting [197] or 
knock-down of TME-expressed EphA3 [198] decreased 
angiogenesis and tumour growth. In breast cancer, 
EphA3 was identified on both cancer cells (upregulated 
by RAGE signalling), and on CAFs, and its activity pro-
moted invasion, which was blocked by a specific EphA3 
inhibitor [199]. Ephrin-A5 expression was identified 
on pancreatic CAFs and thought to mediate interaction 
with EphA receptors on cancer cells, as well as on other 
CAFs, and to promote collagen synthesis [200]. Ephrin-
B2 expressed on lung and pancreatic myofibroblasts was 
found to be shed by the transmembrane metalloprotease 
ADAM10, leading to fibroblast activation and fibrosis, 
and inducing EphB4 signalling in pancreatic cancer cells 
[201, 202]. Multiple ephrin-Bs were similarly found to be 
elevated in prostate CAFs and to promote CAF activa-
tion, cancer cell proliferation, and tumorigenicity in vivo 
[203]. Thus, while Eph and ephrin expression in tumour 
cells can have both tumour suppressive and promoting 
roles [191], their expression in CAFs appears exclusively 
tumour-promoting.
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CAF subtypes
The heterogeneity of CAFs is supported by several key 
findings. Firstly, the molecular markers employed for 
CAF identification are diverse and lack complete specific-
ity, often failing to encompass the entire CAF population. 
Minimal co-localisation of commonly used CAF mark-
ers, such as FSP1, αSMA, and PDGFRβ, was observed in 
tumour stroma of pancreatic and breast cancer mouse 
models, highlighting the inability of these markers to rep-
resent all CAFs in isolation [212]. Secondly, attempts to 
antagonise CAFs to reduce tumour burden have yielded 
contradictory outcomes, emphasising the intricate roles 
of CAFs, which are potentially associated to their het-
erogeneity. The growing recognition of CAF heteroge-
neity has encouraged extensive investigations on CAF 
subtypes that play tumour-suppressive and tumour-pro-
moting roles in the TME (Fig. 2). The advance of scRNA-
seq technology has also facilitated the identification 
and stratification of CAF subtypes in different cancers 
(Table 2). It is important to note, however, that there are 
no definitive factors to clearly stratify the pro-tumour or 
anti-tumour functions of CAFs.

Myofibroblastic CAFs (myCAFs)
Öhlund et  al. firstly identified two distinct subpopula-
tions of CAFs, including myCAFs and inflammatory 
CAFs (iCAFs) in pancreatic cancer [213]. The myCAFs, 
characterised by high α-SMA expression and low IL-6 
expression (α-SMAhighIL -6low) phenotype, were in close 
proximity to neoplastic cells, forming a structural ring 

surrounding clusters of cancer cells. These myCAFs 
exhibited an upregulation of TGF-β response targets 
such as CTGF and COL1A1. A subsequent study found 
that TGF-β secreted by PDAC cells contributes to the 
generation of myCAFs by downregulating IL1R1 expres-
sion [214].

One distinctive feature of myCAFs is their high con-
tractility and ability to synthesise key ECM proteins like 
collagens [215]. This unique trait is believed to contribute 
to tumour tissue stiffness, creating a physical barrier that 
constrain tumour growth and impact treatment efficacy. 
Depletion of α-SMA+ myCAFs in a transgenic murine 
PDAC model resulted in increased invasion, induction of 
EMT, emergence of stem-like properties, reduced overall 
survival (OS), and elevated presence of  CD4+Foxp3+ Treg 
cells [67]. Absence of α-SMA+ myCAFs in the PDAC 
model also rendered tumours unresponsive to gemcit-
abine treatment. However, administration of anti-CTLA4 
therapy showed potential in slowing disease progression 
and extend survival in the α-SMA+ myCAFs depleted 
model. Hedgehog (HH) signalling is generally activated in 
myCAFs, and depletion of SHH (a HH ligand) in PDAC 
tumours led to reduced stroma content but more aggres-
sive cancer with increased vascularity [68]. These studies 
highlight the intricate relationship between myCAFs and 
tumour growth in PDAC. Although the ECM established 
by myCAFs may impede drug delivery, the physical bar-
rier and stiffness could act as constraints against tumour 
growth. Consequently, therapeutic strategies targeting 
myCAFs in PDAC should be carefully considered.

Fig. 2 Tumour-suppressive and tumour-promoting roles of CAF subtypes in TME. CAF: cancer-associated fibroblast; myCAF: myofibroblastic CAF; 
iCAF: inflammatory CAF; apCAF: antigen-presenting CAF; Treg: regulatory T cell; NK cell: natural killer cell; CSC: cancer stem cell; ECM: extracellular 
matrix. The figure was generated using BioRender
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Precision in therapeutic approaches targeting CAFs 
is crucial, as strategies focusing on CAF depletion may 
inadvertently lead to loss of other tumour-suppressive 
cells, potentially exacerbating tumour aggressiveness. 
Krishnamurty et  al. revealed that markers like α-SMA 
and FAP were expressed in multiple stromal cell types, 
including fibroblasts and pericytes in both murine PDAC 
tumours and normal tissues [216]. Recently, a study 
demonstrated that leucine rich repeat containing 15 
(LRRC15) displayed a more specific expression pattern 
in myCAFs, and targeted depletion of  LRRC15+ myCAFs 

resulted in a substantial 70% reduction in overall  PDPN+ 
CAFs, significantly attenuating PDAC tumour growth 
[216]. This selective depletion prompted a transforma-
tion of the remaining CAFs within PDAC tumours into 
a more universally fibroblast-like state. Moreover, elimi-
nation of  LRRC15+ myCAFs enhanced the function of 
 CD8+ T cells, rendering them more effective in response 
to anti-PD-L1 treatment. Taken together, myCAFs 
remain to be a promising and feasible therapeutic tar-
get for PDAC when approached with precision in target 
selection.

Table 2 Major CAF subtypes in different cancers

myCAFs: myofibroblastic CAFs; iCAFs: inflammatory CAFs; apCAFs: antigen-presenting CAFs. α-SMA: α-Smooth muscle actin; IL-6/11/24/33: interleukin 6/11/24/33; 
TNC: tenascin C; TGF-β1/2: transforming Growth Factor-beta 1/2; SERPINE2: Serpin Family E Member 2; FAP: fibroblast activation protein alpha; PDPN: podoplanin; 
COL1A1/2, collagen type I alpha 1/2; TAGLN: transgelin; MYL9: myosin light chain 9; IGFBP3: insulin like growth factor binding protein 3; CTGF: connective tissue 
growth factor; MMP1/3/10/11: matrix metalloproteinase 1/3/10/11; WNT5A: Wnt Family Member 5A; VIM: vimentin; FN1: fibronectin1; COL3/8/14/15/16A1: collagen 
type 3/8/14/15/16 alpha 1; TPM1/2, tropomyosin 1/2; CRLF1, cytokine receptor-like factor 1; FBN2: fibrillin 2; SERPINF1 Serpin Family F Member 1; POSTN: periostin; 
CXCL: C-X-C motif chemokine ligand; FSP-1: fibroblast-specific protein-1; C3/7: complement component 3/7; DPP4: dipeptidyl peptidase 4; Ly6C1: lymphocyte antigen 
6 family member C1; CLEC3B: C-type lectin domain family 3 member B; HAS1: hyaluronan synthase 1; DPT: dermatopontin; CCL7: C-C motif chemokine ligand 7; 
PDGFRα: platelet-derived growth factor receptor alpha; CFD/H: complement factor D/H; ICAM1: Intercellular Adhesion Molecule 1; IGF1: Insulin Like Growth Factor 1; 
LRAT: lecithin-retinol acyltransferase; RELN: reelin; RGS5: regulator of G protein signalling 5; MHC-II: major histocompatibility complex II; SAA3: serum amyloid A3; SLPI: 
secretory leukocyte peptidase inhibitor; KRT8/18: keratin 8/18

Subtypes Markers/Expression signatures Cancers Refs.

myCAFs α-SMAhighIL-6low PDAC [213]

myCAFs TNC, α-SMA, TGF-β1, SERPINE2 Breast [220]

myCAFs FAP, CD90, α-SMA, PDPN, COL1A1, COL1A2 Breast [217]

myCAFs α-SMA, TAGLN, MYL9, IGFBP3, TNC, TGF-β1, TGF-β2, CTGF Breast [218]

myCAFs α-SMA, TAGLN Gastric/ovarian [221]

myCAFs α-SMA, TAGLN CRC [222]

myCAFs COL1A1, COL1A2, FAP, PDPN CRC [223]

myCAFs MMP11, WNT5A SCC [228]

myCAFs α-SMA, TAGLN, VIM, FN1, MMP11, COL1A1, COL3A1, COL15A1, COL16A1, FAP ccRCC [229]

myCAFs α-SMA, TAGLN, MYL9, TPM, COL1A1, COL1A2 Prostate [224]

myCAFs α-SMA, COL1A1, COL8A1, COL15A1, CRLF1, FBN2, SERPINF1 Liver [230]

myCAFs TPM1, TPM2, MYL9, TAGLN, POSTN Gastric [227]

iCAFs FAP+α-SMAlowIL-6high PDAC [213]

iCAFs CD34, CD26, CXCL12, FSP-1, C3, DPP4 Breast [220]

iCAFs CXCL12, CD34 Breast [217]

iCAFs Ly6C1, CLEC3B, HAS1, DPT, COL14A1, IL6, IL33, CXCL1, CXCL12, CCL7 Breast [218]

iCAFs PDGFRα, CFD, CXCL12 Gastric/ovarian [221]

iCAFs ICAM1, PDPN CRC [222]

iCAFs CXCL12 CRC [223]

iCAFs C3, IGF1 SCC [228]

iCAFs CXCX12, IGF1, C3, C7, CFD, CFH, Prostate [224]

iCAFs LRAT, RELN, RGS5 Liver [230]

iCAFs IL6, IL11, IL24, CXCL1, CXCL2, CXCL5, CXCL6, MMP1, MMP3, MMP10 Gastric [238]

iCAFs PDGFRα, IL6, CXCXL1, CXCL2, CXCL12, CXCL14, Bladder [242]

apCAFs MHC-II genes, CD74, SAA3, SLPI PDAC [213]

apCAFs MHC-II genes, CD74, FSP1, KRT8, KRT18 Breast [218]

apCAFs MHC-II genes, CD74, IL-8, POSTN ccRCC [229]

apCAFs MHC-II genes, CD74 Prostate [224]

apCAFs MHC-II genes Lung [246]
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The presence of myCAFs has also been documented 
in breast cancer, and these myCAFs may contribute to 
immunosuppression and resistance to immunother-
apy [217–219]. The myCAFs in breast cancer exhibited 
increased secretion and alignment of collagens, which 
could promote tumour growth and invasion [217]. A 
recent study suggested that myCAFs in breast cancer 
may originate from a specific subset of fibroblasts known 
as  CD26− NFs [220]. The roles of myCAFs in many other 
cancers have also been studied, revealing diverse func-
tions in different cancer types [221–225]. In castra-
tion-resistant prostate cancer (CRPC), SPP1 (Secreted 
Phosphoprotein 1)+ myCAFs were shown to promote 
resistance to androgen deprivation therapy via paracrine 
activation of the ERK signalling pathway [226]. In lung 
cancer, myCAFs marked by FAP and α-SMA expression 
exhibited a high level of fibrillar collagens, contributing to 
the formation of a dense ECM that can restrict the motil-
ity of T cells [225]. In gastric cancer, a specific subtype of 
myCAFs characterised by IGFBP7 expression enhanced 
cancer cell metastasis and stemness [227]. In squa-
mous cell carcinoma (SCC), both myCAFs and iCAFs 
were involved in secretion of collagens and fibronectin 
1, which can interact with CD44 on SCC keratinocytes 
and lead to increased cancer cell proliferation and inva-
sion by activating PI3K/AKT and Src/MAPK signalling 
pathways [228]. Using scRNA-Seq and spatial analysis, 
Davidson et al. demonstrated that myCAFs were in close 
proximity to and strongly interacted with mesenchymal-
like clear cell renal cell carcinoma (ccRCC) within pri-
mary tumours and metastatic sites [229]. This interaction 
promoted cancer invasion through secretion of multiple 
ligands acting on cancer cells. In liver cancer, myCAFs 
secrete hyaluronan by overexpressing hyaluronan syn-
thase 2 (HAS2), leading to increased tumour growth 
[230]. Conditional knockout of Has2 in CAFs resulted 
in reduced hyaluronan production and, consequently, 
smaller tumour sizes in preclinical models. Interestingly, 
blocking tumoral CD44 receptor for hyaluronan did not 
inhibit cancer development, suggesting potential inter-
actions of hyaluronan with non-tumour cells or other 
receptors [230]. In another study, depletion of myCAFs 
was found to reduce tumour growth and mortality in des-
moplastic CRC and pancreatic metastasis [231]. In sum-
mary, myCAFs demonstrated both tumour-promoting 
and tumour-suppressive effects. Future studies should 
focus on developing treatments that can diminish their 
tumour-promoting effects while preserving tumour-sup-
pressive functions.

Inflammatory CAFs (iCAFs)
In PDAC, iCAFs were characterized by low α-SMA 
expression and high levels of inflammatory cytokines, 

such as IL-6 and leukemia inhibitory factor [213]. These 
cells exhibited a loss of myofibroblastic features and are 
typically situated at a distance from cancer cells [213]. 
Activation of the JAK/STAT pathway by tumour-derived 
IL-1 is recognised as a driver for the formation of iCAFs 
[214]. Hypoxia in the TME could also contribute to the 
generation of iCAFs, resulting in their enrichment in 
hypoxic tumour regions [232, 233]. In addition, the for-
mation of iCAFs can be induced by IL-17A derived from 
a specific subpopulation of  CD8+ T cells, known as Tc17 
cells [234]. Compared to untreated patients, pancre-
atic cancer patients resistant to chemotherapy exhib-
ited high levels of iCAFs in tumour stroma, indicating a 
role of iCAFs in chemoresistance [235]. Zhang et al. also 
reported an increased population of iCAFs in chemo-
resistant PDAC patients following chemotherapy, while 
the abundance of myCAFs remained unchanged [236]. 
Despite the predominant pro-tumorigenic roles attrib-
uted to iCAFs in various studies, a cluster of tumour-
restrictive iCAFs characterised by high expression of 
osteoglycin was identified [237]. In PDAC patients, 
iCAF-derived osteoglycin serves as a favourable prognos-
tic biomarker for OS [237].

The pro-tumorigenic roles of iCAFs extend beyond 
pancreatic cancer and are reported in other cancer 
types. In breast cancer, iCAFs recruit myeloid cells in a 
CXCL12-dependent manner and enhance MMP activ-
ity, ultimately leading to increased tumour invasion 
[220]. The spatial distribution of iCAFs in breast cancer 
mirrored that observed in pancreatic cancer, position-
ing iCAFs relatively distal to the invasive tumour surface 
[217]. The abundance of iCAFs in breast tumour tissues 
correlated with the infiltration of Treg cells as well as dys-
function of cytotoxic T-lymphocytes [217]. Interestingly, 
the iCAF-like fibroblasts characterised by PDGFRβ+α-
SMAlowCD34highCD146− was also abundantly detected 
in the surrounding ductal regions of healthy breast tissue 
[217]. In liver cancer, iCAFs showed high expression of 
HGF, promoting tumour growth via the HGF-MET axis 
[230]. Conditional depletion of HGF in CAFs resulted in 
decreased development of liver cancer, and depletion of 
the HGF receptor MET in hepatocytes or tumour com-
partments reduced tumour growth [230]. In gastric can-
cer, iCAFs were enriched with pro-stemness-associated 
pathways, including NF-κB signalling, TNF signalling, 
and cytokine-receptor interaction pathways, implying 
their involvement in cancer stemness [238]. Moreover, 
iCAFs showed interaction with surrounding T cells by 
secreting IL-6 and CXCL12, leading to establishment of 
a tumour-favourable microenvironment in gastric can-
cer [239]. In CRC, fibroblast growth factor 19 (FGF19) 
derived from tumour cells can induce the formation of 
iCAFs through the FGFR4-JAK2-STAT3 pathway [240]. 
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These iCAFs subsequently promoted liver metasta-
sis by increasing neutrophil infiltration and the forma-
tion of neutrophil extracellular traps in liver metastatic 
niches. Some iCAFs showed high expression of IL1R1 
and addition of an IL-1-inhbiting antibody effectively 
reduced tumour spheroid growth [241]. Elevated levels 
of IL1R1 in CRC cancer patients were correlated with an 
increased expression of T cell exhaustion markers like 
LAG3, as well as immunoregulatory proteins such as 
PD-L1 and PD-L2 [241]. In bladder cancer, iCAFs express 
a variety of growth factors that contribute to angio-
genesis, cancer cell proliferation, and chemoresistance 
[242]. In preclinical models of PDAC, while ablation of 
the tumour-restrictive α-SMA+ CAFs reduced survival, 
depletion of  FAP+ CAFs significantly improved survival 
and enhanced the efficacy of immune checkpoint inhibi-
tors (ICIs) [243]. Further research is needed to assess the 
efficacy of iCAF-targeted therapies.

Antigen‑presenting CAFs (apCAFs)
In addition to the two predominant CAF subtypes 
described above, scRNA-seq studies have identified a less 
common cluster of CAFs characterised by high expres-
sion of MHC-II genes and CD74 [244]. These distinct 
CAFs were designated as apCAFs due to their unique 
ability to activate  CD4+ T cells in an antigen-specific 
manner. It should be noted apCAFs are not abundant 
and only sporadically detected in most cancers. In pan-
creatic cancer, apCAFs may originate from mesothe-
lial cells, a transformation induced by IL-1 and TGF-β. 
These apCAFs can directly interact with naive  CD4+ T 
cells, resulting in formation of Treg cells [245]. The use 
of a blocking antibody targeting mesothelin, a marker 
associated with mesothelial cells, can effectively inhibit 
the transition of mesothelial cells into apCAFs, lead-
ing to reduced Treg cells and attenuated tumour growth 
[245]. However, in lung cancer, apCAFs showed a dis-
tinct role by directly activating T cell receptors on adja-
cent effector  CD4+ T cells and producing C1q to rescue 
these T cells from apoptosis [246]. Deletion of MHC-II to 
reduce apCAFs led to increased tumour burden, reduced 
survival rates, and fewer infiltrated T cells, implying 
a tumour-suppressive effect of apCAFs in lung cancer 
[246]. Due to the low abundance of apCAFs, their roles 
in cancer development have not been extensively studied. 
More studies will be required to examine their therapeu-
tic potential.

Other CAF subtypes
Despite the initial classification of myCAF, iCAF, and 
apCAF subtypes in pancreatic cancer, researchers have 
also identified different CAF subtypes. In PDAC, CAFs 
expressing Meflin were associated with a better response 

to chemotherapy, and inducing Meflin expression in 
CAFs could enhance sensitivity of PDAC tumours to 
gemcitabine [247]. These  Meflin+ CAFs were referred as 
"rCAFs" due to their capacity to restrain tumour growth. 
Further investigations revealed that Meflin directly inhib-
its lysyl oxidase, an enzyme responsible for crosslinking 
collagen and elastin, contributing to tissue stiffness and 
increased interstitial pressure [247]. The advancements 
in scRNA-seq technology have facilitated a more com-
prehensive analysis of CAF subtypes, especially in cases 
where a sufficient number of stromal cells are available. 
For instance, Cords et  al. conducted an in-depth analy-
sis of CAF subtypes by employing scRNA-seq on over 
16,000 stromal cells obtained from 14 breast cancer 
patients [248], leading to identification of nine distinct 
CAF subtypes, each characterized by unique molecu-
lar signatures and functions. In cribriform prostate 
cancer, a specific subtype of CAFs characterized by the 
 CTHRC1+ASPN+FAP+ENG+ signature was referred to 
as "CAFÉ CAFs", which was associated with an immu-
nosuppressive TME [249]. In lung cancer, a subpopu-
lation CAFs characterised by  ZIP1+FSP1+CX43high, 
known as "zCAFs", can absorb and transfer  Zn2+ to 
neighbouring cancer cells via gap junctions, leading to 
chemoresistance [250]. Another subtype of CAFs with 
 MYH11+α-SMA+CD34+FAP−ADH1B− signature was 
associated with reduced infiltration of  CD3+ and  CD8+ 
T cells, contributing to immune exclusion within tumour 
nests [225]. Several other CAF subtypes have been 
characterized in different cancers, and these subtypes 
have been reviewed extensively by other researchers 
[251–253].

Normal fibroblasts (NFs)
NFs are widely distributed in many healthy organs and 
tissues, where they play crucial roles in development, 
homeostasis, injury repair, and normal signalling. NFs 
secrete structural macromolecules, such as collagen, 
contributing to the synthesis, remodelling, and main-
tenance of the ECM [254]. In addition, NFs serve as a 
rich source of signalling molecules, including growth 
factors, cytokines, and chemokines, which act on other 
cells to regulate development and other biological pro-
cesses [255]. In response to tissue damage, NFs can rap-
idly expand to produce more ECM-secreting fibroblasts 
that are critical to tissue synthesis, as well as myofibro-
blasts with high expression of contractile proteins such as 
α-SMA [256]. Tissue-specific fibroblasts have been found 
organs such as skin, lung, colon, skeletal muscle, and 
heart, where they support organ development and home-
ostasis [257, 258]. Various molecular markers have been 
reported to identify NFs, with widely used pan-fibroblast 
markers including CD90, PDGFRα/β, vimentin, and 
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collagens [259]. Markers and genes enriched in specific 
NF subtypes have been reviewed by elsewhere [259–261]. 
It is important to note, however, that some NF markers 
are also expressed by other cell types, such as the high 
PDGFRβ expression found in pericytes and smooth mus-
cle cells [262]. Given that CAFs can originate from NFs, 
there is substantial overlap in markers between these two 
fibroblast types, making it critical to approach CAF anal-
ysis with caution to avoid NF contamination.

Directly targeting CAFs
Given the pivotal roles of CAFs in cancer, various strat-
egies have been proposed to develop therapeutic inter-
ventions targeting CAFs. These approaches primarily 
involve CAF elimination, reprogramming, and targeting 
functional factors originating from CAFs. It is essen-
tial to note that many treatments targeting CAFs do not 
exhibit direct inhibitory effects on cancer cells. Conse-
quently, CAF-targeted therapies are often combined with 
other approaches against tumours, aiming to synergisti-
cally enhance their therapeutic efficacy. Proteins that are 
highly expressed by CAFs and play tumour-promoting 
roles are considered as attractive therapeutic targets. 
A common treatment strategy is to inhibit functions 
of these targets by using small molecular inhibitors or 
blocking antibodies (Fig. 3; Table 3).

FAP
Besides serving as a marker for CAFs, FAP is one of the 
most promising targets on CAFs, owing to its important 
roles and high expression in both CAFs and epithelial 
cells. Therapeutic treatments targeting  FAP+ CAFs have 
shown capability to alleviate immunosuppression and 
enhance responses to ICIs. For instance, an adenoviral-
vector vaccine designed to eliminate  FAP+ cells reduced 
the number and suppressive function of immunosup-
pressive cells within tumours, concurrently inducing a 
robust  CD8+ T cell response [263]. Talabostat, a small 
molecule dipeptidyl peptidase inhibitor of FAP, exhib-
ited anti-tumour activity primarily through induction 
of tumour-specific cytotoxic T lymphocytes [264]. The 
introduction of CAR-T cells designed to target FAP also 
showed promising therapeutic outcomes in murine mod-
els [243, 265–267]. In addition, several studies explored 
targeted delivery of radioisotopes or drugs to tumours 
by using anti-FAP antibodies, resulting in therapeutic 
regressions in preclinical cancer models [268–270].

A number of treatments targeting  FAP+ CAFs have 
progressed into clinical trials. The humanized murine 
anti-FAP monoclonal antibody F19 [271], known as 
Sibrotuzumab, showed a specific FAP targeting effect in 
cancer patients [272]. However, this antibody treatment 
alone did not demonstrate substantial therapeutic benefit 

Fig. 3 Treatments directly targeting CAFs currently in clinical trials. CAF, cancer-associated fibroblasts. Cell surface proteins and intracellular proteins 
highly expressed by CAFs have been targeted by various drugs. The figure was generated using BioRender



Page 13 of 35Cao et al. Journal of Biomedical Science            (2025) 32:7  

in patients with metastatic CRC [273]. The FAP inhibi-
tor talabostat also did not achieve significant therapeutic 
effect in the clinic either as a monotherapy or in combi-
nation with chemotherapy [274, 275]. Currently, an ongo-
ing clinical investigation is exploring the combination 
of talabostat with immunotherapy [276, 277]. An anti-
FAP bispecific antibody linked to IL-2v (RO6874281) 
has been assessed in a Phase I trial, showing objective 
responses in some patients [278]. Another bispecific 

antibody, targeting both FAP and DR5, displayed strong 
anti-tumour efficacy in preclinical models [279] and is 
currently under clinical evaluation [280]. Other anti-FAP 
bispecific antibodies featured with FAP-targeting and 
immunomodulatory effects have also been developed 
[281]. The exploration of CAR-T cell therapies target FAP 
is underway in clinical trials too [282].

Recent developments in targeted delivery of radionu-
clide to tumours by anti-FAP peptides or inhibitors have 

Table 3 Clinical trials for therapies directly targeting CAFs

CRC: colorectal cancer; CRPC: castration-resistant prostate cancer; PDAC: pancreatic ductal adenocarcinoma; MPM: malignant pleural mesothelioma; BCC: basal cell 
carcinoma; TNBC: triple negative breast cancer; NSCLC: non-small cell lung cancer; GC: gastric cancer; MM: multiple myeloma. SD: stable disease; ORR: objective/
overall response rate; PR: partial response; PFS: progression free survival; DCR: disease control rate. Mono: monotherapy; Chemo: chemotherapy; Targeted: targeted 
therapy; ICI: immune checkpoint inhibitor

Targets Agents Combination Cancer Phase Trial number Outcomes Refs.

FAP Sibrotuzumab Mono CRC II NCT02198274 Futility [273]

Talabostat Mono CRC II – SD (21%) [274]

Talabostat Chemo Melanoma II NCT00083252 ORR (12.5%) [275]

Talabostat ICI CRPC Ib/II NCT03910660 – [276]

Talabostat ICI PDAC II NCT05558982 – [277]
177Lu-FAP-2286 Mono Solid I/II NCT04939610 Safe [284]
177Lu-EB-FAPI Mono Solid I NCT05400967 – –
177Lu-DOTA-FAPI Mono Solid I NCT04849247 Safe [288]
177Lu-DOTA-EB-FAPI Mono Thyroid I NCT05410821 DCR (83%)

ORR (25%)
[289]

177Lu-DOTA-EB-FAPI Mono Solid I NCT05963386 – –
177Lu-PNT6555 Mono Solid I NCT05432193 – –
177Lu-LCN1004 Mono Solid I NCT05723640 – –

CART-FAP Mono MPM I NCT01722149 Safe [282]

RO6874281 Mono Solid I NCT02627274 Safe [278]

RO6874813 Mono Solid I NCT02558140 Safe [280]

RO7122290 ICI Solid Ib/II NCT04826003 ORR (18.4%) [281]

RO7300490 Mono, ICI Solid I NCT04857138 – –

PDGFR Imatinib ICI Solid I NCT01738139 Safe [293]

Imatinib ICI Melanoma Ib/II NCT04546074 – [294]

Regorafenib ICI CRC – NCT04771715 SD (45%)
PR (5%)

[321]

Sunitinib ICI Sarcoma 1b/II NCT03277924 PFS (48%) [322]

Olaratumab Chemo Sarcoma III NCT02451943 Futility [296]

Olaratumab ICI Sarcoma NCT03126591 Safe [297]

HH Sonidegib Mono BCC II NCT01327053 ORR (48.1%) [304]

Sonidegib Chemo TNBC I NCT02027376 ORR (30%) [305]

Sonidegib ICI NSCLC I NCT04007744 Safe [306]

Vismodegib Mono BCC II NCT02667574 ORR (71%) [307]

Vismodegib Mono GC II NCT03052478 DCR (5.3%) [308]

Vismodegib Chemo Pancreatic II NCT01088815 Futility [309]

FSP-1 Niclosamide Mono CRC II NCT02519582 Safe [312]

LRRC15 ABBV-085 Mono Solid I NCT02565758 ORR (20%) [317]

IL-1R Anakinra Chemo, targeted CRC II NCT02090101 SD (68.8%)
ORR (15.6%)

[319]

Anakinra CAR-T MM 1b/II NCT03430011 Safe [320]
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shown great promise [283, 284]. Several peptide-based 
FAP inhibitors (FAPI) with high affinities and selective 
binding to FAP-expressing tumours have been devel-
oped. Radiolabelled FAPI with 177Lu exhibited promising 
efficacy in preclinical cancer models [285–287], leading 
to the assessment of 177Lu-FAPI in clinical trials. Safety 
profiles of 177Lu-FAPI have been established in several 
phase I studies, and anti-tumour effects were observed in 
cancer patients [284, 288]. In a dose-escalation study for 
treating patients with metastatic radioiodine refractory 
thyroid cancer, 177Lu-FAPI demonstrated promising ther-
apeutic efficacy, with a disease control rate (DCR) of 83% 
and objective response rate (ORR) of 25% [289]. More 
ongoing clinical trials are in progress to evaluate the effi-
cacy of different 177Lu-FAPI treatments. In the future, 
it will be interesting to explore the therapeutic effect of 
combining 177Lu-FAPI with established anti-tumour 
therapies like immunotherapy and chemotherapy.

PDGFRα/β
High expression of PDGFRα/β has been observed in 
CAFs, vascular cells, and malignant cells, where these 
receptors play crucial roles in shaping an immunosup-
pressive TME, promoting angiogenesis, facilitating 
tumour growth, and fostering metastasis [290]. Thera-
peutic interventions targeting PDGFRα/β demonstrated 
potential to enhance immunotherapies in murine mod-
els, prompting further exploration in clinical settings 
[291, 292].

Several small molecule inhibitors targeting the PDGF/
PDGFR pathway have been developed. Imatinib, a 
TKI targeting PDGFR, c-Kit, and BCR-ABL, has been 
approved by the U.S. Food and Drug Administration 
(FDA) for treating several cancers. Clinical trials are 
currently exploring the combined use of imatinib with 
immunotherapies. While a combination of imatinib and 
ipilimumab was well-tolerated in cancer patients, it did 
not exhibit a synergistic effect [293]. Efficacy studies 
involving the combination of imatinib with other ICIs, 
such as atezolizumab and pembrolizumab, are currently 
underway [294]. Other multi-target TKIs for PDGFR, 
including regorafenib, sunitinib, ripretinib, and avapri-
tinib, have received FDA approval for treating gastro-
intestinal stromal tumours (GIST) [295]. These TKIs 
are also being evaluated as combination treatments 
with immunotherapies or targeted therapies in different 
cancers.

In addition to small molecule inhibitors, there is ongo-
ing development of antibodies targeting PDGFR. The 
combination of the anti-PDGFRα antibody olaratumab 
with doxorubicin did not yield a significant improvement 
in OS for sarcoma patients compared to the placebo 
plus doxorubicin treatment [296]. The combination of 

olaratumab with pembrolizumab was well-tolerated, with 
a reported disease control rate (DCR) of 53.6% in a phase 
I trial [297]. Bispecific antibodies concurrently binding to 
PDGFR and other targets also showed promising results 
in preclinical studies [298, 299], while their clinical effec-
tiveness remain to be investigated.

Hedgehog (HH) signalling
Activation of the HH signalling pathway in CAFs pro-
moted tumorigenesis and metastasis in preclinical stud-
ies [300, 301]. In contrast, inhibition of the HH signalling 
pathway using the specific inhibitor sonidegib reduced 
the myCAF/iCAF ratio and impeded tumour growth 
[302]. Another HH inhibitor, vismodegib, also exhibited 
inhibitory effects on tumour growth in preclinical models 
[303]. These promising findings led to the evaluation of 
HH inhibitors in clinical trials. Sonidegib demonstrated 
robust efficacy in a phase II trial involving patients with 
basal cell carcinoma [304]. The combination of sonidegib 
and chemotherapy showed anti-tumour activity in triple-
negative breast cancer (TNBC) patients [305]. Currently, 
the efficacy of combining sonidegib with pembroli-
zumab is under investigation for treating NSCLC [306]. 
Vismodegib, as a monotherapy, achieved a 71% ORR in 
basal cell carcinoma patients [307] and a DCR of 5.3% in 
gastric cancer patients [308]. In newly diagnosed meta-
static pancreatic cancer patients, the combination of vis-
modegib and chemotherapy did not enhance efficacy of 
chemotherapy [309]. To facilitate future clinical trials for 
therapies targeting HH signalling, it will be beneficial to 
develop diagnostic approaches to evaluate HH signalling 
activation in cancer patients.

Other CAF targets
Other proteins highly expressed by CAFs have also been 
targeted in preclinical studies and clinical trials. For 
instance, niclosamide functioning as a FSP-1 transcrip-
tional inhibitor, demonstrated potential in reducing liver 
metastasis of colon cancer and boosting efficacy of ICIs 
in preclinical models [310, 311]. Niclosamide exhibited 
favourable tolerability in patients and is being evaluated 
in a phase II trial for CRC [312]. Neutralising antibod-
ies targeting PDPN showed inhibition of tumour growth 
and metastasis in xenograft models for osteosarcoma, 
oral cancer, and malignant pleural mesothelioma (MPM) 
[313–315], supporting clinical assessment of anti-PDPN 
antibodies in the future. The tumour-promoting char-
acteristic of CAFs with high LRRC15 expression has 
inspired the development of LRRC15-targeted thera-
pies. ABBV-085, a monomethyl auristatin-E (MMAE) 
antibody–drug conjugate targeting LRRC15, demon-
strated anti-tumour efficacy in preclinical models [316]. 
The safety and tolerability of ABBV-085 in patients were 
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assessed, with reported anti-tumour responses in sar-
coma patients [317]. CAFs with elevated IL-1R expres-
sion were shown to promote tumour development and 
induce an immunosuppressive TME [241]. Anakinra, an 
FDA-approved IL-1R antagonist for treating rheuma-
toid arthritis, showed potential to reduce CAF-derived 
thymic stromal lymphopoietin, which correlates with 
poor survival rates in pancreatic cancer patients [318]. 
Encouragingly, combination of anakinra with 5-FU and 
bevacizumab has shown promise in treating patients 
with refractory CRC [319]. Currently, a phase Ib/II clini-
cal trial is underway to explore the combination of anak-
inra with CAR-T therapy for the management of relapsed 
multiple myeloma [320]. As many of these targets may 
not be widely expressed in all cancer patients, a stringent 
selection of cancer patients for clinical trials is essential 
for future studies.

Targeting CAF‑derived factors
Many tumour-promoting factors derived from CAFs 
have been identified in the past, positioning them as 
promising targets for therapeutic interventions. These 
factors can either directly interact with cancer cells to 
regulate tumour actions, or affect other stromal compo-
nents like immune cells. Many clinical trials have been 
carried out to assess the efficacy of drugs targeting these 
CAF-derived factors (Fig. 4; Table 4).

TGF‑β
CAF-mediated TGF-β signalling pathway is involved 
in the crosstalk between CAFs and cancer cells. Activa-
tion of the TGF-β signalling pathway in cancer cells can 
increase proliferation, migration, invasion, immunosup-
pression, and therapy resistance. By inhibiting activation 
of latent TGF-β1, the agent SRK-181-mIgG1 can sensi-
tise tumour response to anti-PD-1 treatment in preclini-
cal models, without causing evident toxicities [323, 324]. 
In a phase I study, SRK-181 exhibited no dose-limiting 
toxicity when administered as a monotherapy or in com-
bination with pembrolizumab [325], while the efficacy 
remains to be explored. Fresolimumab, a neutralizing 
monoclonal antibody for all TGF-β isoforms, exhibited 
good tolerance and anti-tumour activity in a phase I trial 
[326]. However, its immunoregulatory effects were found 
to be minimal in a subsequent phase II study [327]. An 
imaging study utilizing 89Zr radiolabelled fresolimumab 
demonstrated good penetration into recurrent high-
grade gliomas, but the antibody did not yield clinical 
benefits, leading to discontinuation of further develop-
ment for oncology indications [328]. Another anti-TGF-β 
monoclonal antibody SAR439459 demonstrated a syner-
gistic effect with PD-1 blockade, enhancing anti-tumour 
immunity in a preclinical study [329]. Unfortunately, 

a recent study revealed a lack of efficacy and a notable 
risk of bleeding in cancer patients treated with this drug, 
resulting in termination of the trial [330].

An alternative strategy for targeting TGF-β involves 
designing ligand traps. AVID200, a receptor ectodo-
main trap computationally designed to target TGF-β1/3, 
increased T-cell-mediated cytotoxicity and enhanced the 
efficacy of ICIs in syngeneic preclinical models [331]. 
The safety prolife of AVID200 is currently under clini-
cal evaluation [332]. Bifunctional molecules containing 
TGF-β traps have also been developed, and one notable 
example is M7824 that combines the TGF-βRII receptor 
(acting as a trap) with an anti-PD-L1 IgG1 [333]. Pre-
clinical studies have demonstrated the tumour-targeting 
effect and anti-tumour efficacy of M7824 [333, 334]. 
However, a phase III clinical trial was terminated due to 
a lack of superior efficacy compared to pembrolizumab 
[335]. Another bifunctional TGF-β trap fused drug, anti-
CTLA4-TGF-βRII, showed superior anti-tumour efficacy 
compared to an anti-CTLA4 antibody alone in preclini-
cal models [336], but its efficacy in patients has not been 
investigated.

The cytoplasmic kinase activity of TGF-β receptors can 
also be targeted for cancer therapy. Several small mole-
cule receptor kinase inhibitors have been developed for 
this purpose and are currently in clinical trials [337–342]. 
For example, vactosertib, an orally bioavailable TGF-β 
receptor kinase inhibitor, showed efficacy against multi-
ple myeloma in preclinical models, either as a monother-
apy or in combination with other treatments [343, 344], 
leading to the clinical assessment of vactosertib. Similar 
drugs such as galunisertib and LY3200882 are under clin-
ical investigation.

IL‑6
CAF-derived IL-6 contributes to cancer invasion, metas-
tasis, angiogenesis, immune modulation, and drug resist-
ance. Several drugs targeting IL-6 or the IL-6 receptor 
(IL-6R) received FDA approval for treating inflamma-
tory diseases like rheumatoid arthritis [345]. Recently, 
their potential in cancer therapy has attracted attention, 
with observed anti-tumour efficacy in preclinical models 
[346, 347]. One such drug, siltuximab, a chimeric anti-
IL-6 antagonistic antibody, received FDA approval for 
treating multicentric Castleman disease and is currently 
being investigated for treating cancers. In patients with 
castration-resistant prostate cancer (CRPC), elevated 
baseline IL-6 was correlated with poor survival, and sil-
tuximab treatment resulted in a 23% stable disease (SD) 
rate [348]. Another anti-IL-6 antibody, clazakizumab, 
improved cancer cachexia in NSCLC patients, as shown 
by biomarker analysis [349]. In preclinical models resist-
ant to anti-PD-L1 treatment, dual blockade of IL-6R and 
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PD-L1 attenuated tumour growth and improved survival 
[350, 351], leading to clinical evaluation of this combi-
nation therapy. A combination of siltuximab and spar-
talizumab is currently in a phase Ib/II trial for metastatic 
pancreatic cancer [352]. Combination of siltuximab with 
chemotherapies achieved an impressive ORR of 90.9% in 
patients with untreated multiple myeloma [353]. Tocili-
zumab, an anti-IL-6R humanized monoclonal antibody, 
is also under clinical investigation in combination with 
ICIs.

Other interleukins
In addition to IL-6, CAFs can produce many other 
interleukins, including IL-10, IL-11, IL-22, IL-32, and 
inhibiting actions of these interleukins resulted in 
anti-tumour effects in some studies [22, 354–356]. For 
instance, neutralising IL-10 with an antibody potenti-
ated anti-tumour immune reaction in a preclinical 
model mimicking human CRC liver metastases [357]. 
Interestingly, overexpression of IL-10 or administration 
of pegylated IL-10 in preclinical models also inhibited 

Fig. 4 Drugs targeting CAF-derived factors that promote tumour development. CAF: cancer-associated fibroblasts. The figure was generated using 
BioRender
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Table 4 Clinical trials for therapies targeting CAF-derived factors and corresponding receptors

Targets Agents Comb Cancer Phase Trial number Outcomes Refs.

TGF-β SRK-181 Mono; ICI Solid I NCT04291079 Safe [325]

Fresolimumab Mono Melanoma; RCC I NCT00356460 Safe [326]

Fresolimumab Mono Glioma I NCT01472731 - [328]

Fresolimumab Mono MPM II NCT01112293 SD (23.1%) [327]

SAR439459 Mono; ICI Solid I NCT03192345 Bleeding risk [330]

AVID200 Mono Solid I NCT03834662 Safe [332]

M7824 Mono NSCLC III NCT03631706 No improved efficacy [335]

TGF-βR Vactosertib Mono Solid I NCT02160106 Safe [337]

Vactosertib Targeted Desmoid Ib/II NCT03802084 Safe [338]

Vactosertib Targeted MM I NCT03143985 Safe [342]

Galunisertib Targeted HCC II NCT01246986 Prolonged OS [339]

Galunisertib Chemo Pancreatic Ib/II NCT01373164 Prolonged OS [340]

LY3200882 Mono; ICI; Chemo; Radio Solid I NCT02937272 Safe [341]

IL-6 Siltuximab Mono Prostate II NCT00433446 SD (23%) [348]

Clazakizumab Mono NSCLC II NCT00866970 – [349]

Siltuximab ICI Pancreatic Ib/II NCT04191421 – [352]

Siltuximab Chemo MM Ib/II NCT01531998 ORR (90.9%)
CR (9.1%)
PR (81.8%)

[353]

IL-6R Tocilizumab ICI Lung Ib/II NCT04691817 – –

Tocilizumab ICI Melanoma II NCT03999749 – –

IL-10R Pegilodecakin ICI NSLCL Ib NCT02009449 ORR (43%) [359]

Pegilodecakin Chemo PDAC III NCT02923921 Futility [360]

IL-11 9MW3811 Mono Solid I NCT05911984 – –

CXCL8 BMS-986253 ICI Solid Ib/II NCT03400332 PR (17.9%) [365]

CXCL12 NOX-A12 Mono; ICI CRC; Pancreatic Ib/II NCT03168139 SD (25%) [373]

NOX-A12 Radio GBM Ib/II NCT04121455 PR (40%) [374]

CCR2/5 BMS-813160 ICI PDAC Ib/II NCT03767582 Safe [378]

CXCR2 AZD5069 Hormone CRPC Ib/II NCT03177187 PR (24%) [381]

Navarixin ICI Solid II NCT03473925 – –

CXCR1/2 Reparixin Mono TNBC II NCT01861054 Futility [384]

SX-682 ICI Solid Ib/II NCT04574583 Bleeding risk [385]

SX-682 ICI Pancreatic I NCT04477343 – [386]

SX-682 ICI CRC Ib/II NCT04599140 – [387]

CXCR4 AMD3100 Targeted MM Ib/II NCT00903968 ORR (48.5%) [389]

BL-8040 Chemo; ICI Pancreatic II NCT02826486 ORR (32%)
DCR (77%)

[390]

LY2510924 Targeted RCC II NCT01391130 Futility [391]

LY2510924 Chemo SCLC II NCT01439568 Futility [392]

Ulocuplumab Chemo; Targeted MM Ib/II NCT02666209 ORR (55.2%) [393]

CXCL9/10 NG-641 Mono Solid I NCT04053283 Safe [397]

HGF Ficlatuzumab Targeted HNSCC II NCT03422536 ORR (19%) [399]

Ficlatuzumab Targeted Lung Ib/II NCT01039948 Futility [400]

Emibetuzumab Mono NSCLC II NCT01900652 ORR (4.3%) [401]

Emibetuzumab Targeted Solid Ib/II NCT02082210 DCR (60%)
ORR (6.7%)

[402]

c-MET Rilotumumab Chemo Gastric III NCT01697072 Worse outcome [403]

Onartuzumab Targeted NSCLC II NCT00854308 Improved OS and PFS [404]

Tepotinib Mono HCC Ib/II NCT01988493 ORR (10.5%) [406]

Capmatinib ICI NSCLC II NCT04139317 Futility [407]
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tumour growth [358]. Pegilodecakin, acting as an 
IL-10 receptor agonist, exhibited a notable  43% ORR 
in NSCLC patients when combined with nivolumab 
or pembrolizumab [359]. However, in another clinical 
study, addition of pegilodecakin failed to improve the 
efficacy of chemotherapy in advanced PDAC patients 
[360]. Therapeutics targeting IL-11/IL-11R signalling 
are recently developed, with a humanised anti-IL-11 
antibody 9MW3811 currently in a phase I trial for 
treating solid tumours. Treatments targeting IL-22/

IL-22R or IL-32/IL-32R signalling have not yet been 
developed.

CXC chemokines
CAFs secrete a range of C-X-C motif chemokine ligand 
(CXCL) family proteins that act on cancer cells and 
stromal cells, leading to increased tumour proliferation, 
metastasis, and immunosuppression. Preclinical stud-
ies have demonstrated great potential in targeting CXCL 
chemokines for cancer therapy. Inhibiting CAF-derived 

RCC: Renal Cell Carcinoma; MPM: Malignant Pleural Mesothelioma; NSCLC: non-small cell lung cancer; MM: multiple myeloma; HCC: hepatocellular carcinoma; PDAC: 
pancreatic ductal adenocarcinoma; GBM: glioblastoma; CRC: colorectal cancer; CRPC: castration-resistant prostate cancer; TNBC: triple negative breast cancer; SCLC: 
Small Cell Lung Cancer; HNSCC: head and neck squamous cell carcinoma; UCC: urothelial carcinoma; CCA: cholangiocarcinoma; GIST: gastrointestinal stromal tumour; 
GC: gastric cancer. OS: overall survival; SD: stable disease; ORR: objective/overall response rate; CR: complete response; PR: partial response; PFS: progression free 
survival; DCR: disease control rate. Radio: radiotherapy

Table 4 (continued)

Targets Agents Comb Cancer Phase Trial number Outcomes Refs.

FGF FP-1039 Chemo MPM Ib NCT01868022 ORR (36%)
SD (47%)
DCR (86%)
PR (14/36)

[410]

FP-1039 Chemo NSCLC Ib NCT01868022 ORR (47%) [411]

FGFR Pemigatinib Mono CCA II NCT02924376 ORR (35.5%)
DCR (82%)

[415]

AZD4547 Mono Breast Ib/II NCT01791985 ORR (10%) [416]

AZD4547 Mono Solid II NCT02465060 ORR (5%)
SD (51%)

[417]

Infigratinib Mono CCA II NCT02150967 ORR (23.1%) [418]

Infigratinib Mono GBM II NCT01975701 ORR (3.8%) [419]

Debio 1347 Mono Solid I NCT01948297 ORR (16.7%)
DCR (79%)

[422]

Dovitinib Mono RCC I NCT00715182 ORR (3.0%)
DCR (49.3%)

[424]

Nintedanib Chemo NSCLC III NCT00805194 ORR (4.4%)
DCR (54.0%)

[426]

Rogaratinib Mono UCC IIb/III NCT03410693 ORR (20.7%) [420]

Futibatinib Mono Solid Ib/II NCT04189445 ORR (11.5%) [421]

LY2874455 Mono Solid I NCT01212107 DCR (85.2%) [423]

Erdafitinib Mono UCC II NCT02365597 ORR (40%) [413]

Erdafitinib Mono CCA II NCT02699606 ORR (40.9%)
DCR (81.8%)

[414]

Ponatinib Mono GIST II NCT01874665 ORR (7%) [425]

Bemarituzumab Chemo Gastric II NCT03694522 ORR (53%) [428]

Vofatamab ICI UCC Ib/II NCT03123055 ORR (29.6%) [429]

BAY 1187982 Mono Solid I NCT02368951 Poor tolerability [430]

LY3076226 Mono Solid I NCT02529553 Safety dose [431]

HA PEGPH20 Chemo PDAC Ib/II NCT01959139 Reduced OS [436]

PEGPH20 Chemo PDAC III NCT02715804 ORR (47%)
No effect on OS and PFS

[437]

PEGPH20 ICI PDAC II NCT03634332 Increased medium OS [438]

PEGPH20 ICI PDAC Ib/II NCT03193190 ORR (6.1%) [439]

PEGPH20 ICI GC Ib/II NCT03281369 Futility [439]

VCN-01 Chemo PDAC I NCT02045602 ORR (50%) [440]
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CXCL1 using antagonistic antibodies reversed radio-
resistance in oesophageal squamous cell carcinoma xeno-
graft models [361] and reduced growth of bladder cancer 
cells [362]. Another humanised monoclonal antibody 
NTC-001 neutralising CXCL1, is currently undergoing 
preclinical evaluation [363]. CAF-derived CXCL8 (also 
known as IL-8) can promote tumour resistance to cispl-
atin in gastric cancer [364]. An anti-CXCL8 neutralizing 
antibody BMS-986253, when combined with nivolumab, 
showed tolerable safety and resulted in partial response 
(PR) in cancer patients who had previously progressed 
after anti-PD-(L)1 or anti-CTLA-4 treatment [365]. The 
role of CXCL11 in tumour development is controversial. 
CAF-derived CXCL11 increased migration and metas-
tasis of HCC [366], while cancer cell-secreted CXCL11 
enhanced  CD8+ T cell infiltration in a preclinical study 
[367]. Elevated levels of CXCL11 were associated with 
anti-tumour immune responses and improved prognosis 
in colon cancer [368]. CXCL12 secreted by CAFs contrib-
utes to tumour proliferation, invasion, metastasis, immu-
nosuppression, and angiogenesis [369–372]. Combining 
a CXCL12 inhibitor, NOX-A12, with pembrolizumab 
induced immune response, resulting in SD in heavily 
pretreated cancer patients [373]. In addition, combin-
ing NOX-A12 with radiotherapy led to partial remission 
of target lesions in GBM patient [374]. While roles for 
CXCL2, CXCL3, CXCL5, and CXCL7 in cancers have 
been reported [46, 375, 376], specific treatments target-
ing these chemokines have not yet been developed. CAFs 
also produce CCL2 and CCL5, two other chemokine 
ligands promoting tumour growth and metastasis [49, 
377]. BMS-813160, a dual antagonist targeting CCR2 
and CCR5 (the receptors for CCL2 and CCL5), is cur-
rently under assessment for efficacy in combination with 
nivolumab [378].

Some treatments have been developed to target recep-
tors of CXC ligands, considering the capacity of CXC 
receptors (CXCRs) in binding to multiple CXC ligands. 
For instance, CXCR2 is known to interact with seven 
CXCL proteins, including CXCL1, CXCL2, CXCL3, 
CXCL5, CXCL6, CXCL7, and CXCL8 [379]. Several 
antagonists targeting CXCR2 are currently under clini-
cal evaluation. AZD5069, a CXCR2 inhibitor, exhibited 
promising anti-tumour activity in patients with meta-
static CRPC when combined with enzalutamide [380, 
381]. Ongoing investigations are exploring the efficacy of 
AZD5069 in combination with ICIs. Additionally, some 
CXCR2 inhibitors, such as danirixin and elubrixin, which 
were initially developed for treating non-cancer diseases, 
are being repurposed for cancer treatment with encour-
aging prospects. CXCR1 as a receptor for CXCL6 and 
CXCL8, is also a promising target for cancer treatment. 
Reparixin, which was initially developed as a CXCR1/2 

inhibitor to attenuate inflammatory responses in organ 
transplantation and tissue injury [382], demonstrated 
anti-tumour effects in preclinical models [383]. Unfor-
tunately, a clinical trial assessing the efficacy of reparixin 
in treating TNBC was terminated due to lack of efficacy 
[384]. SX-682, another CXCR1/2 inhibitor, when com-
bined with M7824 and CV301 (a vaccine for CEA and 
MUC1), resulted in disease controls in some patients but 
also caused grade 3 bleeding adverse effect [385]. Com-
bination of SX-682 with other ICIs is currently assessed 
in phase I/II trials [386, 387]. CXCR4, the receptor for 
CXCL12, is also being targeted for cancer therapy in the 
clinic. AMD3100 as a CXCR4 antagonist was approved 
by FDA for autologous transplantation in patients with 
non-Hodgkin’s Lymphoma or multiple myeloma [388]. 
The combination of AMD3100 with bortezomib resulted 
in a clinical benefit rate of 60.6% and an ORR of 48.5% in 
pretreated multiple myeloma patients [389]. BL-8040, a 
cyclic peptide inhibitor for CXCR4, when combined with 
pembrolizumab and chemotherapy, demonstrated a DCR 
of 77% in pancreatic cancer patients [390]. However, 
another cyclic peptide inhibitor for CXCR4, LY2510924, 
did not improve the efficacy of sunitinib in patients with 
RCC [391], and was ineffective in SCLC patients [392]. 
Notably, an anti-CXCR4 antagonist antibody, ulocu-
plumab, resulted in a 55.2% ORR and a clinical benefit 
rate of 72.4% when combined with lenalidomide and dex-
amethasone [393].

In contrast to the tumour promoting CXCL proteins, 
some CXC chemokines exhibit anti-tumour activity. 
These chemokines are usually secreted by cancer cells or 
other stromal cells rather than CAFs. Notably, CXCL9 
and CXCL10 inhibited tumour growth and enhanced the 
efficacy of ICIs in preclinical cancer models [394–396]. 
These findings has led to the development of NG-641, 
an oncolytic adenoviral vector engineered to encode 
four immunostimulatory transgenes, including CXCL9, 
CXCL10, IFNα, and a bispecific T cell activator antibody 
targeting both FAP and CD3 [397]. The safety profile of 
NG-641 is currently under phase I clinical assessment, 
with no result released at the current stage.

HGF
HGF produced by CAFs can activate the c-MET recep-
tor tyrosine kinase on tumour cells, promoting tumour 
growth and metastasis [398]. The humanised anti-HGF 
antagonistic antibody ficlatuzumab did not yield clinical 
benefits as a monotherapy, but resulted in a 19% ORR in 
patients with HNSCC when combined with cetuximab 
[399]. In another study, combining ficlatuzumab with 
gefitinib showed no significant difference compared to 
gefitinib monotherapy [400]. Emibetuzumab, another 
anti-HGF antagonistic antibody, was well tolerated but 
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achieved only 4.3% ORR in patients with MET-positive 
NSCLC [401]. Combining emibetuzumab with ramu-
cirumab (an anti-VEGFR2 antibody) resulted in a 6.7% 
ORR and a 60% DCR in HCC patients [402].

The c-MET receptor tyrosine kinase was also tar-
geted for treating different cancers. Unfortunately, rilo-
tumumab, a c-MET targeting agent, failed to meet the 
primary endpoint and was associated with worse OS 
in a phase III study [403]. However, the combination of 
erlotinib and onartuzumab, another antagonistic anti-
body for c-MET, resulted in improvements in both pro-
gression-free survival and OS in MET-positive NSCLC 
patients [404]. The FDA has now approved capmatinib 
and tepotinib (two highly selective MET inhibitors) for 
treating metastatic NSCLC with MET exon 14 skipping 
[405]. Tepotinib monotherapy was also more effective 
than sorafenib (targeting VFGFR, PDGFR, c-Kit, RET) in 
treating HCC patients with MET-positive tumours [406]. 
The combination therapy of capmatinib and pembroli-
zumab was not well tolerated and did not enhance ICI 
efficacy in NSCLC patients [407]. These studies suggest 
that treatments targeting HGF-c-Met signalling may only 
be effective to a fraction of cancer patients that need to 
be carefully selected in future clinical trials.

FGF
FGF proteins secreted by tumour stromal cells interact 
with FGF receptors (FGFRs) on cancer cells, resulting in 
enhanced cancer cell growth [408]. Aberrant activation of 
FGFR in cancer has been observed and can occur through 
variants, gene fusion, and copy number amplification 
[409]. Considering the important roles of FGF/FGFR sig-
nalling in cancer, treatments targeting this signalling have 
been developed. An example is FP-1039, which serves as 
a FGF ligand trap consisting of a Fc region and extracel-
lular domain of FGFR1. FP-1039 treatment showed a 36% 
ORR in MPM and a 47% ORR in NSCLC in a phase Ib 
study [410, 411]. Due to the versatility of FGFR in binding 
different FGFs, interventions have also been developed 
to inhibit actions of FGFR. Erdafitinib and pemigatinib, 
two TKIs targeting FGFR1-4 and FGFR1-3 respectively, 
obtained FDA approval for treating advanced urothelial 
cancer with FGFR2/3 genetic alterations and myeloid/
lymphoid neoplasms with FGFR1 rearrangement [412]. 
In a phase II trial, erdafitinib demonstrated a 40% ORR 
in patients with advanced or metastatic urothelial cancer 
harbouring FGFR alterations [413]. Comparable results 
were reported in cholangiocarcinoma (CCA) patients 
with FGFR alterations, in which erdafitinib achieved 
a 40.9% ORR in a phase IIa study [414]. Pemigatinib, in 
comparation, resulted in a 35.5% ORR in CCA patients 
with FGFR2 fusions or rearrangements [415].

AZD4547, a selective inhibitor of FGFR1-3, showed a 
10% ORR in patients with endocrine-resistant breast can-
cer [416], and a 5% ORR in solid tumours with aberra-
tions in FGFR pathway [417]. Other selective inhibitors 
for FGFR have also been evaluated in the clinic, exhibit-
ing variable efficacy [418–423]. Non-selective inhibitors 
targeting FGFR have also been explored in the clinic. For 
instance, dovitinib targeting FGFR1/3, VEGFR1/3, c-KIT, 
FLT, showed a 3.0% ORR and a 49.3% DCR in advanced 
and metastatic RCC [424]. Ponatinib, which targets 
FGFR1 and other tyrosine kinases, exhibited a 7% ORR in 
GIST with KIT mutations after the failure of TKI treat-
ment [425]. Nintedanib, an FDA-approved drug targeting 
FGFR1-3, VEGFR1-3, PDGFRα/β, FLT3, could enhance 
the efficacy of docetaxel in NSCLC [426]. More non-
selective FGFR inhibitors have been reported and sum-
marised by others [409, 427].

Antagonistic antibodies targets FGFR have also been 
developed and evaluated. Bemarituzumab targeting 
FGFR2b achieved a 53% ORR in gastric cancer har-
bouring FGFR2 overexpression or amplification [428]. 
Another antibody targeting FGFR3 showed a 29.6% 
ORR when combined with pembrolizumab for treat-
ing metastatic urothelial cancer [429]. Recent advance-
ments on FGFR targeted therapy also include two 
antibody–drug conjugates, BAY1187982 and LY3076226. 
The BAY1187982 targeting FGFR2 to deliver auristatin-
based payloads, showed poor tolerability in a phase I 
trial, leading to termination of this study [430]. In con-
trast, LY3076226 targeting FGFR3 with a cleavable linker 
and the maytansine derivative DM4 payload, exhibited 
acceptable safety and tolerability, but no responses were 
observed [431]. In the future, the combination of these 
drugs with other treatments could be explored.

Hyaluronan (HA)
CAFs also produce high-molecular-mass polysaccha-
rides like HA to regulate cancer behaviours [432, 433]. 
The HA forms substantial complexes with proteoglycans, 
contributing to increased tumour interstitial fluid pres-
sure, which limits penetration of therapeutic treatments 
into tumours [434]. Enzymatic depletion of HA with a 
recombinant HA-degrading enzyme resulted in reduced 
tumour cell ECM, decreased interstitial fluid pressure, 
decompression of tumour vessels, increased tumour 
vascular area, inhibited tumour growth, and enhanced 
chemotherapy efficacy [435]. These findings pro-
moted clinical investigation of a HA-degrading enzyme, 
PEGPH20, in combination with other anti-cancer ther-
apies. Unfortunately, the combination of PEGPH20 
with chemotherapy resulted in increased toxicity and 
decreased OS in general PDAC patients [436]. Another 
study involving PDAC patients with elevated HA levels 
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showed that combining PEGPH20 with chemotherapy 
cannot improve OS and progression-free survival [437]. 
However, when combined with pembrolizumab, 
PEGPH20 improved OS in HA-high PDAC patients 
[438]. The combination of PEGPG20 with atezolizumab 
showed very limited activity in PDAC and no benefit in 
GC patients [439]. Interestingly, VCN-01, an oncolytic 
virus expressing hyaluronidase, showed encouraging 
clinical activity in PDAC, achieving an ORR of 50% in a 
phase I trial [440], implying that the delivery method for 
HA-degrading enzyme could make a difference in thera-
peutic outcomes. In contrast to the systemically delivery 
of PEGPH20, the VCN-01 has the unique capability to 
induce local tumour production of hyaluronidase, poten-
tially resulting in a more targeted and effective distribu-
tion of the enzyme in tumours.

CAF reprogramming
Reprogramming activated CAFs into quiescent CAFs 
is another strategy for cancer therapy targeting CAFs in 
TME (Fig. 5; Table 5). This approach could be promising 
for treating pancreatic cancer, where ablation of CAFs 
unexpectedly accelerated tumour growth in preclinical 
models. All-Trans Retinoic Acid (ATRA) as a standard 
treatment for patients with acute promyelocytic leu-
kemia, could transform activated CAFs into quiescent 

CAFs. In pancreatic cancer, ATRA binds to retinoic 
acid receptor beta on pancreatic stellate cells, suppress-
ing ECM remodelling and inhibiting tumour cell inva-
sion [441]. Combining ATRA with gemcitabine led to 
enhanced anti-tumour effect in KPC mice [442]. The 
combination of ATRA with gemcitabine-nab-paclitaxel 
was safe and well tolerated in PDAC patients, resulting in 
a median OS longer than previously reported for chemo-
therapy-only treatments [443]. In addition, the combina-
tion of ATRA with pembrolizumab exhibited an ORR of 
71% and a 50% complete response in patients with meta-
static melanoma [444]. Additional studies are required to 
investigate whether the addition of ATRA can augment 
the efficacy of other therapies in different cancer types.

Vitamin D treatment also showed potential to deacti-
vate CAFs and reduce the production of tumour-pro-
moting factors [445, 446]. In patient with early stage 
lung adenocarcinoma and low vitamin D level, vitamin 
D treatment resulted in improved relapse-free survival 
and OS [447]. Nonetheless, the vitamin D analogue seo-
calcitol failed to demonstrate any objective anti-tumour 
activity in advanced pancreatic cancer [448]. A phase II 
study also reported no improvement with vitamin D sup-
plementation in addition to chemotherapy in CRC [449]. 
Minnelide, a plant-derived compound, showed ability to 
deactivate CAFs and anti-tumour efficacy in preclinical 

Fig. 5 Drugs aiming to reprogram activated CAFs into quiescent CAFs. The figure was generated using BioRender

Table 5 Clinical trials for therapies aiming to deactivate CAFs

PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; GIST, gastrointestinal stromal tumour. OS, overall survival; ORR, objective/overall response rate

Agents Comb Cancer Phase Trial number Outcomes Refs.

ATRA Chemo PDAC I NCT03307148 Prolonged median OS [443]

ATRA ICI Melanoma Ib/II NCT03200847 ORR (71%) [444]

Seocalcitol Mono Pancreatic II – Futility [448]

Vitamin D Chemo CRC II NCT01516216 Futility [449]

Minnelide Mono Pancreatic II NCT03117920 – –

Minnelide Mono GIST I NCT01927965 – –

Minnelide Chemo PDAC I NCT05557851 – –
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models for pancreatic and liver cancers [450, 451]. Com-
bining minnelide with chemotherapy led to a synergistic 
effect in pancreatic cancer models [452]. Clinical stud-
ies involving minnelide are ongoing, and no results have 
been reported. Angiotensin receptor blockers can also 
potentially reprogram CAFs into a quiescent state, and 
targeted delivery of angiotensin receptor blockers to 
tumours enhanced efficacy of immunotherapy in pre-
clinical models [453]. While these therapies have shown 
promising results, clinical studies are so far limited.

Conclusion and prospects
Significant progress has been made in the discovery and 
characterization of CAFs in the past. It is now widely 
acknowledged that CAFs play a pivotal role in tumour 
development and at least partially contribute to the fail-
ures of current anti-cancer therapies. Treatments target-
ing CAFs have been developed, and promising results 
have been observed in many preclinical studies. How-
ever, the translation of these CAF-targeted therapies into 
clinical interventions has proven challenging and has not 
been as successful as anticipated. A key obstacle is the 
absence of clinically relevant animal models to assess effi-
cacy of CAF-targeted therapies. Unlike therapies directly 
targeting tumour cells, the effectiveness of CAF-targeted 
therapies largely depends on the microenvironment and 
the composition of tumour stroma in patients. Unfortu-
nately, due to the complexity and heterogeneity of TME, 
these factors cannot be fully recapitulated in most pre-
clinical models, leading to inconsistent outcomes of 
CAF-targeted therapies in animal models and patients. 
Cell line xenografts and allografts remain the most used 
models for examining CAF-targeted therapies in preclin-
ical studies. To establish stromal abundant tumours in 
animal models, CAFs are often co-injected with tumour 
cells. However, the spatial distribution and phenotypes 
of these introduced CAFs may differ significantly from 
those observed in patients. Recent CAF classifications 
in cancer patients have identified diverse CAF subtypes 
with distinct functions, another complexity that many 
preclinical models fail to represent.

CAFs are a large and heterogeneous cell population 
within the intricate TME, playing complex roles in regu-
lating tumour growth. Molecularly, CAFs interact with 
cancer cells and other stromal cells through secreted 
signalling molecules and receptors. They secrete a range 
of growth factors, chemokines, and cytokines that can 
directly affect receptors on cancer cells or other stro-
mal cells, such as immune cells in the TME. Spatially, 
CAFs influence tumour growth by remodelling the ECM 
and forming physical barriers that impact tumour cell 
expansion and the infiltration of cells and treatments. 
These behaviours endow CAFs with multifaceted roles 

in cancers. The contribution of each characteristic to 
tumour growth may vary depending on the cancer type. 
For instance, in PDAC, the growth-inhibitory effect of 
the physical barrier formed by CAFs may outweigh the 
tumour-promoting effects of CAF-secreted factors. 
However, such physical barriers might also create niches 
that contribute to treatment resistance. Given the sig-
nificant roles and high abundance of CAFs in tumours, 
targeting CAFs could be a potent strategy for treating 
cancers, especially when combined with other therapies. 
Nonetheless, treatment approaches should be carefully 
evaluated for different cancer types, and more innovative 
strategies are needed to eliminate their pro-tumour roles 
while preserving their tumour-restricting functions.

Current therapeutic approaches targeting CAFs pri-
marily rely on utilisation of small inhibitors and antibod-
ies. Nonetheless, these treatments exhibit a relatively 
modest inhibitory effect on CAFs, and resistance to such 
therapies could emerge over time. In response to these 
challenges, there has been a growing interest in using 
radioligand therapy or radiopharmaceutical therapy to 
deplete CAFs. These therapies have shown remarkable 
results in preclinical models, prompting the evaluation of 
treatments like 177Lu-FAPi in clinical settings. One nota-
ble advantage of radioligand therapy lies in its prolonged 
therapeutic effect, attributed to the long half-life of the 
delivered radioisotope. Moreover, the beta particle range 
of 177Lu enables these drugs to simultaneously inhibit 
growth of adjacent tumour cells [454]. This innovative 
approach presents a potential breakthrough in targeting 
CAFs with greater efficacy and sustained effects. Inspired 
by the development of 177Lu-FAPi, other radiopharma-
ceutical therapies targeting CAFs can be developed by 
radiolabelling existing CAF-targeted treatments with 
177Lu or other suitable radioisotopes. These drugs may 
have superior CAF-ablating efficacy, as both the vehicle 
and carried radioisotopes contribute to the inhibition 
and depletion of CAFs.

Treatment strategies focusing on tumour-promoting 
factors derived from CAFs are appealing in scenarios 
where stromal barriers restrict cancer cell growth and 
movement. It is important to note, however, that target-
ing a single factor may only be successful in specific pre-
clinical models and a limited subgroup of cancer patients 
where the specific factor plays a predominant role in pro-
moting tumour growth. Given that CAFs can produce 
multiple tumour-promoting factors, these strategies are 
less likely to have a significant impact across broad can-
cer patients. The inhibitory effects of such therapies may 
be counterbalanced by increased expression of other 
tumour-promoting factors.

Most CAF-targeted therapies directly inhibit or regu-
late growth and behaviours of CAFs rather than tumours. 
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Although these therapies can alter the TME and thereby 
affect tumour growth, their efficacy could be further 
enhanced when combined with other cancer treatments 
including chemotherapy, targeted therapy, and immu-
notherapy. However, the dosage, tolerability, and safety 
profiles of combination therapies should be carefully 
investigated. To reduce systemic toxicity caused by com-
bination therapies and enhance tumour-specific targeting 
of the stromal cells, bispecific antibodies can be consid-
ered to concurrently target CAFs and cancer cells.

An expeditious approach for advancing development of 
CAF-targeted drugs is to repurpose existing non-cancer 
drugs already in clinical trials or approved by FDA. As 
activated fibroblasts in inflammatory conditions share 
similarities with CAFs, drugs with anti-fibrotic proper-
ties originally developed for conditions like idiopathic 
pulmonary fibrosis could be repurposed for inhibiting 
CAFs [455, 456]. This repurposing approach offers an 
accelerated pathway for developing CAF-targeted drugs, 
benefited from their established safety profiles and toler-
ability in other conditions.

While many clinical trials for CAF-targeted therapies 
primarily focus on patients with advanced and metastatic 
cancers, it will be worthwhile to explore the potential 
of these therapies in preventing cancer metastasis and 
relapse, as CAFs play essential roles in cancer cell dis-
semination and dormancy. Furthermore, assessing the 
feasibility of using CAF-targeted therapies as neoadju-
vant treatments could open new avenues for future can-
cer treatment.

The accurate selection of patients is fundamental to 
ensuring the reliability and success of clinical trials for 
CAF-targeted therapies. Given the inherent heterogene-
ity of CAFs and individual variations, it is anticipated that 
these therapies will be effective in only a subset of cancer 
patients. Therefore, patients should be carefully selected 
based on reliable criteria, such as stroma-tumour ratio 
and target expression level.
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