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Abstract 

Artificial intelligence (AI) has emerged as a transformative force in precision medicine, revolutionizing the integration 
and analysis of health records, genetics, and immunology data. This comprehensive review explores the clinical appli‑
cations of AI‑driven analytics in unlocking personalized insights for patients with autoimmune rheumatic diseases. 
Through the synergistic approach of integrating AI across diverse data sets, clinicians gain a holistic view of patient 
health and potential risks. Machine learning models excel at identifying high‑risk patients, predicting disease activ‑
ity, and optimizing therapeutic strategies based on clinical, genomic, and immunological profiles. Deep learning 
techniques have significantly advanced variant calling, pathogenicity prediction, splicing analysis, and MHC‑peptide 
binding predictions in genetics. AI‑enabled immunology data analysis, including dimensionality reduction, cell popu‑
lation identification, and sample classification, provides unprecedented insights into complex immune responses. 
The review highlights real‑world examples of AI‑driven precision medicine platforms and clinical decision support 
tools in rheumatology. Evaluation of outcomes demonstrates the clinical benefits and impact of these approaches 
in revolutionizing patient care. However, challenges such as data quality, privacy, and clinician trust must be navigated 
for successful implementation. The future of precision medicine lies in the continued research, development, and clin‑
ical integration of AI‑driven strategies to unlock personalized patient care and drive innovation in rheumatology.
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Introduction
Precision medicine marks a pivotal shift in healthcare, 
steering away from the conventional ‘one-size-fits-all’ 
approach to a more personalized strategy tailored to 
individual patient profiles with immune disorders [1, 
2]. This approach is deeply rooted in the integration 
of multi-dimensional data sources, including genetic 
information, immunological profiles, and extensive 
health records. The importance of integrating these 
diverse data types is magnified by the application of 
artificial intelligence (AI), which significantly enhances 
our ability to interpret complex biological data and 
translate it into clinically actionable insights [1].

AI, particularly through its subsets of machine learn-
ing (ML) and deep learning, is instrumental in dissect-
ing the multi-omics and multifaceted datasets typical 
of modern healthcare systems [3]. These technologies 
excel at recognizing patterns and anomalies within 
large datasets, facilitating more precise and predictive 
healthcare. In genetics, AI algorithms are crucial for 
analyzing genetic markers quickly and accurately, offer-
ing insights into patient susceptibilities and potential 
responses to treatments [4]. This capability not only 
accelerates the process of genetic screening but also 
enhances the specificity of therapeutic interventions 
tailored to individual genetic profiles.

In the domain of immunology, AI’s impact is equally 
transformative. AI models are adept at simulating 
immune system dynamics and predicting how it might 
respond to various treatments. This is particularly 
valuable in the design of personalized immunothera-
pies, which aim to optimize efficacy while minimizing 
adverse effects, thereby significantly advancing patient 
care in conditions such as autoimmune diseases and 
cancer immunotherapies [3, 5–7].

Moreover, the integration of AI with electronic health 
records (EHRs) provides a comprehensive overview of 
patient health histories, enhancing diagnostic accuracy 
and treatment efficacy [8]. AI-driven analysis of EHRs 
can identify hidden patterns across patient populations, 
predict disease progression, and suggest preventative 
measures tailored to individual health profiles [9]. This 
holistic approach not only improves individual patient 
outcomes but also contributes to broader public health 
strategies.

However, while the integration of AI into precision 
medicine offers substantial benefits, it also brings chal-
lenges such as ensuring data privacy, securing patient 
consent, and managing the ethical complexities asso-
ciated with AI-driven decisions. The success of AI in 
healthcare hinges on navigating these challenges care-
fully, maintaining the integrity of patient data, and 

ensuring that AI-driven interventions are transparent 
and equitable [10].

The aim of this comprehensive review is to explore the 
clinical applications of integrating health records, genet-
ics, and immunology in precision medicine, facilitated by 
the advancements in AI, for patients with autoimmune 
rheumatic diseases (Fig. 1). This review will examine how 
AI-driven analytics can transform the landscape of preci-
sion medicine by offering more accurate prognostics and 
targeted therapeutic interventions.

AI‑driven analysis of health records
AI has made significant strides in healthcare, offering 
innovative solutions to enhance patient care and stream-
line medical processes. We can see numerous successful 
applications of AI in healthcare, all built upon vast Elec-
tronic Health Records (EHR). Especially, deep learning 
has gained major attention due to its remarkable success 
in tasks like face recognition, image classification, object 
detection, and segmentation [11]. These advancements 
stem from deep learning models’ ability to automatically 
learn intricate patterns in extensive datasets, enabling 
highly accurate and complex visual recognition. This 
success has spurred AI adoption across diverse fields. 
For example, Aidoc’s AI platform transforms radiology 
departments by providing continuous, intelligent sup-
port, allowing radiologists to make faster and more accu-
rate decisions. It analyzes CT scans to identify critical 
conditions like strokes, pulmonary embolisms, and brain 
hemorrhages, facilitating timely interventions [12]. Simi-
larly, Google’s AI system has achieved a breakthrough in 
diabetic retinopathy screening, examining retinal pho-
tos with accuracy comparable to ophthalmologists, ena-
bling early detection and treatment to potentially prevent 
vision loss [13]. Beyond image recognition, AI requires 
real EHR data to support its judgments and remove 
noise; without this, AI cannot learn effectively.

In addition to imaging applications, AI also shows 
promise in drug discovery and epidemiological forecast-
ing. For example, Atomwise’s platform, AtomNet, uses 
deep learning to analyze molecular structures and pre-
dict effective molecules for drug development, potentially 
providing treatments for diseases like Ebola and multiple 
sclerosis [14]. BlueDot’s AI platform, meanwhile, moni-
tors global health trends to predict the spread of infec-
tious diseases, offering insights that support proactive 
healthcare measures [15]. These models rely on collect-
ing various types of EHR data and repeated long-term 
measurements.

The success of AI in healthcare can be attributed to its 
ability to process vast amounts of data swiftly and accu-
rately. Before modeling, the application of AI in EHR 
requires several steps (Table 1):
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Step 1: data collection
The process begins with data collection, where EHRs 
are aggregated from sources like hospitals, clinics, and 
healthcare providers. Leveraging AI, particularly ML, 
greatly enhances data collection from EHRs. ML algo-
rithms can extract vital information from unstructured 
EHR data, such as clinical notes, lab reports, and radiol-
ogy images. Natural Language Processing (NLP) mod-
els can identify key terms, diagnoses, medications, and 
patient demographics. This automation streamlines the 
data collection process and reduces the need for manual 
effort [16, 17].

Step 2: data cleaning
Following data collection, data cleaning is essential. 
This phase involves meticulously addressing missing 
values, eliminating duplicates, and rectifying any incon-
sistencies. AI can significantly enhance data cleaning in 
EHRs by correcting errors like misspelled units through 
fuzzy search and unit conversion, as well as using clini-
cal context to clean numeric values and detect outliers. 
The goal is to achieve high automation while maintain-
ing data quality and ensuring alignment with data gov-
ernance policies [18].

Fig. 1 Framework for AI‑Driven Integration of Multi‑modal Data in Precision Medicine

Table 1 The Steps for Applying AI to Process EHR

Step Aim Role of AI

Step 1: Data collection Gather comprehensive data from multiple sources ML algorithms extract information from unstructured 
EHR data. NLP models identify key terms

Step 2: Data cleaning Address missing values, remove duplicates, and fix 
inconsistencies

AI corrects errors

Step 3: Normalization 
and standardization

Adjust data to a standard scale for comparability AI models normalize and standardize quantitative data

Step 4: Data preservation Maintain integrity and confidentiality of data AI helps monitor and secure data throughout the process
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Step 3: normalization and standardization
Normalization and standardization are subsequent steps 
that adjust numerical data to a common scale. This is 
especially important for lab results and other quantitative 
measures, ensuring that all data points are comparable 
and interpretable by AI models [19].

Step 4: data preservation
Maintaining the integrity and confidentiality of patient 
data is essential throughout this process.

Each of these steps plays a vital role in preparing data 
for AI processing. Together, they ensure that the data 
fed into AI algorithms is high-quality, structured appro-
priately, and contains the most relevant information for 
analysis.

Potential liability and reimbursement
The implementation of AI in EHR systems raises critical 
considerations regarding liability and reimbursement. 
From a liability perspective, the use of AI-driven clinical 
decision support tools creates complex questions about 
responsibility when adverse events occur. Healthcare 
providers must navigate situations where AI recommen-
dations conflict with clinical judgment, requiring clear 
protocols for documentation and decision-making pro-
cesses. Medical institutions need robust frameworks to 
determine liability distribution among healthcare provid-
ers, AI system developers, and healthcare organizations. 
This includes establishing clear audit trails for AI-assisted 
decisions and maintaining transparency in algorithmic 
decision-making processes. Regarding reimbursement, 
the integration of AI tools into clinical practice faces sev-
eral challenges. Current healthcare payment systems are 
not fully equipped to handle AI-assisted services, with 
limited Current Procedural Terminology (CPT) codes 
specifically designed for AI applications. While some 
insurers have begun covering AI-assisted diagnostics, 
particularly in medical imaging, reimbursement policies 
for AI applications in clinical decision support remain 
inconsistent. Healthcare organizations must carefully 
evaluate the cost-effectiveness of AI implementations, 
considering both the initial investment and ongoing 
operational costs against potential reimbursement rates. 
Recent studies suggest that value-based care models may 
better accommodate AI-enabled services compared to 
traditional fee-for-service systems. The Centers for Medi-
care and Medicaid Services (CMS) has started developing 
frameworks for AI reimbursement, but standardization 
across different payers remains a significant challenge. 
These considerations underscore the need for health-
care organizations to develop comprehensive strategies 
addressing both liability protection and financial sustain-
ability when implementing AI-driven EHR systems.

AI‑powered genetics analysis
Genetics have undergone a revolutionary transformation 
in recent years, driven by rapid advancements in high-
throughput sequencing technologies and the exponen-
tial growth of genomic data [20]. As those national-wide 
database, such as UK Biobank and All of US, demon-
strated, the vast amount of information generated by 
these techniques has created an unprecedented opportu-
nity for researchers to unravel the intricate relationships 
between genetic variations phenotypic traits and dis-
eases, paving the way for personalized medicine and pre-
cision healthcare [21, 22]. However, the sheer volume and 
complexity of genomic data have also posed significant 
challenges in data analysis and interpretation [23, 24].

AI, a powerful computational paradigm that has 
shown remarkable prowess in extracting insights from 
large and complex datasets [25, 26]. AI techniques, such 
as machine learning and deep learning, have recently 
emerged as invaluable tools for navigating the genomic 
landscape, enabling researchers to identify patterns, 
make predictions, and uncover hidden relationships 
within the vast expanse of genetic information [4]. For 
instance, AI can help in analyzing genomic sequences 
to predict the impact of genetic variations on protein 
structure and pathogenicity, and pinpointing potential 
active pathway. Additionally, AI-driven tools are improv-
ing the efficiency and accuracy of genome techniques 
such as CRISPR and neoantigen identification, accelerat-
ing the pace of genetic research and the development of 
novel treatments for genetic disorders. In this review, we 
provide a comprehensive overview of the current state-
of-the-art AI methodologies in variant calling and MHC-
Peptide binding, highlighting the potential benefits of 
these approaches (Table 2).

Variant calling
Over the past two decades, Illumina sequencing technol-
ogies have dominated variant calling studies with their 
production of short reads. Numerous tools have been 
developed specifically for analyzing these short reads, 
including the Genome Analysis Toolkit (GATK) pipeline. 
GATK integrates a series of best practice workflows that 
begin with initial data processing, including quality con-
trol and alignment, and continue through variant calling, 
filtering, and annotation. This comprehensive approach 
ensures accurate and reliable analysis of genomic data.

Utilizing deep learning techniques, e.g. DeepVariant, 
excel in accurately identifying genetic variants from next-
generation sequencing data. Unlike traditional meth-
ods, DeepVariant interprets sequencing data akin to 
images through convolutional neural networks (CNNs), 
allowing it to detect subtle genetic variations with 
exceptional precision. This tool is pivotal in enhancing 
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variant calling accuracy for both single nucleotide poly-
morphisms (SNPs) and insertions/deletions (indels), thus 
significantly impacting fields such as medical genetics, 
personalized medicine, and evolutionary biology. It have 
showed outperform with other statistical based methods 
in the short reads [27].

Pacific Biosciences (PacBio) introduced a single-mol-
ecule real-time (SMRT) sequencing platform that can 
generate high-fidelity (HiFi) long reads with an average 
length of 13.5 kilobases (kb) using a Circular Consensus 
Sequence (CCS) approach. Oxford Nanopore Technolo-
gies (ONT) has changed the sequencing paradigm by 
introducing sequencers that are portable with real-time 
data delivery and are able to generate ultra-long reads. 
Again, DeepVariant is available for those long read vari-
ant calling [28, 29]. Also other AI-based variant callers 
such as DNAscope, which combines GATK’s Haplotype-
Caller with a machine-learned genotyping model was 
developed for short reads and long reads [30].

Identification of pathogenicity
Identifying a pathogenic variant is a critical process in 
genetic diagnostics and involves a systematic approach 
combining multiple sources of evidence. The American 
College of Medical Genetics and Genomics (ACMG) pro-
vides a set of guidelines for variant classification, which 
includes evaluating population data, computational pre-
dictions, functional studies, segregation analysis, and de 
novo occurrences. Additionally, databases like ClinVar 

are used to compare findings with existing classifications 
and supporting evidence [31, 32]. Still lots of variants are 
classified as a variant of uncertain significance (VUS) 
when there is insufficient scientific evidence to deter-
mine whether the genetic change is benign (harmless) or 
pathogenic (disease-causing). This uncertainty can arise 
due to factors such as the rarity of the variant and limited 
research studies.

AI models like AlphaMissense and PrimateAI-3D have 
demonstrated remarkable capabilities in predicting the 
pathogenicity of genetic variants based on structure and 
function of proteins and evolutionary conservation [33, 
34]. AlphaMissense is a deep learning model that lever-
ages protein structural information and evolutionary 
constraints from related sequences to accurately classify 
genetic variants as benign or pathogenic [33]. Similarly, 
PrimateAI-3D is a semi-supervised 3D convolutional 
neural network that operates on protein structures, ena-
bling it to distinguish between benign and disease-caus-
ing variants [34]. SIGMA, also a deep learning model 
based on protein structural information have been pro-
posed [35]. RENOVO and StrVCTVRE are machine 
learning tools that reclassify VUS [36, 37]. RENOVO 
uses random forests to classify variants as pathogenic or 
benign based on publicly available data, reclassifying 67% 
of ClinVar VUSs. StrVCTVRE distinguishes pathogenic 
from benign structural variants overlapping exons, allow-
ing clinicians to prioritize novel SVs and resolve undiag-
nosed cases.

Table 2 Summary of AI‑powered Genetics Analysis

Section Description Key AI Tools Applications

Variant Calling Tools such as DeepVariant use 
CNNs for high accuracy in detect‑
ing genetic variants in short and 
long reads, aiding fields like medical 
genetics and evolutionary biology

DeepVariant, DNAscope Medical genetics, Evolutionary 
biology

Identification of Pathogenicity AI models like AlphaMissense 
and PrimateAI‑3D leverage protein 
structure for variant classification, 
improving pathogenicity predic‑
tion and variant reclassification 
in diagnostics

AlphaMissense, PrimateAI‑3D, 
RENOVO, StrVCTVRE

Genetic diagnostics, Clinical variant 
interpretation

Splicing and Copy Number Vari‑
ation

Non‑coding variants such as splic‑
ing and CNVs are detected by tools 
like SpliceAI, which aid in genetic 
disorder diagnostics and per‑
sonalized medicine by analyzing 
functional consequences

SpliceAI, DL‑CNV, SVcnn Genetic disorder diagnostics, Disease 
mechanism understanding

MHC‑Peptide Binding Predictions AI models like NetMHCpan‑4.0 
and BigMHC enhance predictions 
of peptide‑MHC binding, crucial 
for immunotherapy and vaccine 
development, by using neural net‑
works for improved accuracy

NetMHCpan‑4.0, BigMHC, MHC‑
flurry‑2.0

Immunotherapy, Vaccine develop‑
ment
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Those methods have demonstrated remarkable capabil-
ities in predicting the pathogenicity of variants based on 
structural, evolutionary, and other informative features, 
enabling the reclassification of many VUS and aiding in 
the resolution of undiagnosed cases.

Splicing and copy number variation
Non-coding variants play a pivotal role in the devel-
opment and progression of various diseases. Splic-
ing variants, which disrupt the normal process of gene 
expression, can lead to the production of abnormal or 
non-functional proteins, contributing to genetic dis-
orders and complex diseases. Copy number variations 
(CNVs), involving deletions or duplications of large 
DNA segments, can encompass entire genes or regula-
tory regions, causing gene dosage imbalances and altered 
expression levels. These changes can directly contrib-
ute to genetic disorders or modulate disease suscepti-
bility and severity in complex conditions like autism, 
schizophrenia, and cancers. Unraveling the impacts of 
non-coding variants is crucial for understanding disease 
mechanisms, improving diagnostics, and developing 
targeted therapies in the era of personalized medicine. 
SpliceAI, a ML-based tool developed at the Broad Insti-
tute, is instrumental in this endeavor [38]. It predicts 
the effects of genetic variants on splicing, the process 
of removing non-coding regions from pre-messenger 
RNA. By analyzing genomic sequences and splicing data, 
SpliceAI identifies variants likely to disrupt or create new 
splice sites, leading to aberrant splicing and potential 
protein dysfunction. Considering genomic context, splice 
site sequences, and regulatory elements, it provides 
scores and predictions on the variant’s impact on exon 
skipping, intron retention, or new splice site creation. 
This computational approach aids in interpreting non-
coding and splice site variants, unveiling their functional 
consequences and potential involvement in genetic dis-
orders and complex diseases, ultimately contributing to 
targeted therapies and personalized medicine strategies.

Several novel computational methods for detecting 
CNVs and structural variations (SVs) from next-gener-
ation sequencing data were developed. These include 
ifCNV, which uses isolation forests for CNV detection 
without a reference dataset [39]; DL-CNV, an alignment-
free deep learning approach for targeted CNV detec-
tion [40]; and SVcnn, an accurate deep learning method 
that improves multi-allelic SV detection from long-read 
sequencing data [41]. With improved detection of genetic 
variants like CNVs and SVs, these computational meth-
ods facilitate genetic diagnosis, personalized medicine 
approaches, and understanding disease mechanisms. 
They overcome limitations of traditional methods, ena-
bling reliable large-scale genomic studies to uncover 

genetic contributors to diseases and advance precision 
medicine strategies.

Predictions MHC‑peptide binding
The accurate prediction of peptide binding to MHC mol-
ecules is crucial for understanding the immune response 
and developing effective vaccines and immunotherapies. 
Traditional methods for MHC-peptide binding predic-
tion, such as position-specific scoring matrices (PSSMs) 
and quantitative structure–activity relationship (QSAR) 
models, have limitations in capturing complex pat-
terns and nonlinear interactions [42, 43]. Deep learning 
techniques, particularly neural networks, have emerged 
as powerful tools for addressing these challenges and 
improving the accuracy of MHC-peptide binding pre-
dictions. For example, NetMHCpan-4.0 is a widely used 
computational tool for predicting binding of peptides 
to any MHC class I molecule based on artificial neu-
ral networks [44]. BigMHC comprises an ensemble of 
seven deep neural networks trained on mass spectrom-
etry data of peptides presented by MHC-I molecules. It 
also performed transfer learning on data from assays of 
antigen-specific immune response to further improve the 
prediction [45]. Other deep learning methods include 
MHCflurry-2.0 (an ensemble of neural networks) [46], 
MHCnuggets (many allele-specific LSTM networks for 
variable length peptides) [47], and MixMHCpred (using 
positional weight matrices to extract epitope motifs) 
[48]. The emergence of these advanced machine learning 
techniques has allowed for significant accuracy gains in 
MHC-peptide binding prediction.

Artificial intelligence has catalyzed a revolution in 
genetics through the implementation of machine learning 
and deep learning techniques, enabling highly accurate 
variant calling, pathogenicity prediction, splicing analy-
sis, and MHC-peptide binding predictions. The appli-
cations of these novel AI methodologies have extended 
beyond these domains, encompassing the predictions of 
T cell receptor (TCR) and B cell receptor (BCR)-epitope 
interactions [49, 50], outperforming human experts in 
answering genetics-related questions through large lan-
guage models [51], and facilitating tumor risk predic-
tion and interpretation via multi-omics data integration 
[52]. Future research directions in this field include the 
integration of multi-modal data, the development of 
interpretable models, the implementation of privacy-
preserving AI algorithms, and the exploration of genera-
tive models. The contributions of AI in genetics span a 
wide range of applications, including personalized medi-
cine, drug discovery and development, disease preven-
tion, evolutionary biology, and genome editing, driving 
the advancement of precision healthcare and enhancing 
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our comprehension of the intricate relationships between 
genotypes and phenotypes.

Medical utilization
Recent advancements in AI for genetics have profound 
implications for biomedicine, particularly in precision 
healthcare. The identification of genetic variants, which 
are instrumental in understanding disease susceptibil-
ity and patient-specific treatment response, has been 
enhanced through AI-driven techniques. By accurately 
identifying pathogenic variants, tools such as DeepVari-
ant, AlphaMissense, and PrimateAI-3D enable clini-
cians and researchers to predict the functional impact 
of genetic mutations, facilitating targeted treatment 
approaches for genetic disorders. Similarly, AI’s role in 
variant reclassification contributes to resolving VUS, 
allowing for clearer diagnostic interpretations that can 
impact clinical decision-making. In addition, AI-based 
splicing and CNV analysis models, including SpliceAI 
and DL-CNV, support the identification of structural 
and non-coding mutations, which are key to diagnos-
ing complex diseases like cancer and neurodegenera-
tive disorders. Furthermore, advances in MHC-peptide 
binding prediction, vital for immunotherapy and vaccine 
development, allow for a more nuanced understanding 
of immune responses. By integrating biological and clini-
cal data, AI aids in uncovering novel therapeutic targets 
and improving the accuracy of disease models, ultimately 
propelling a shift towards personalized medicine that 
addresses unique patient genetic profiles.

AI‑enabled immunology data analysis
AI has emerged as a pivotal tool in analyzing immuno-
logical data, significantly enhancing our understanding of 
complex immune responses. The use of AI, particularly 
in the processing and interpretation of high-dimensional 
data such as that obtained from flow cytometry and 
CyTOF (Cytometry by Time-Of-Flight), allows research-
ers to decipher intricate immune cell interactions and 
functionalities at an unprecedented scale and depth [53, 
54]. ML significantly enhances the analysis of immuno-
logical data through various advanced techniques.

Dimensionality reduction
ML utilizes dimensionality reduction techniques, includ-
ing Principle Component Analysis (PCA), t-Distributed 
Stochastic Neighbor Embedding (tSNE), UMAP to sim-
plify the complex datasets generated by flow cytometry 
and CyTOF [55–57]. By reducing the number of variables 
while retaining essential information, ML algorithms can 
more effectively identify meaningful patterns within the 
data, facilitating a better understanding of immune cell 
behavior and interactions [53].

Cell population identification
ML methods facilitate in identifying distinct cell popu-
lations within high-dimensional immunological data 
based on their phenotypic and functional characteristics, 
allowing for precise mapping of immune cell heteroge-
neity [53]. Unsupervised and supervised machine learn-
ing methods are pivotal for cell-type identification in 
immunological studies. Unsupervised learning, such as 
K-means clustering and hierarchical clustering, groups 
cells based on their inherent similarities in multi-dimen-
sional data sets without prior labels, revealing novel 
cell populations and states [58]. In contrast, supervised 
learning methods, including linear discriminant analysis 
(LDA) classifier and other algorithms of DGCyTOF and 
DeepCyTOFusing neural network models for cell annota-
tion, rely on labeled training data to classify cells into pre-
defined types, improving the accuracy and robustness of 
cell-type identification [59]. Integrating both approaches 
enable a comprehensive understanding of cellular hetero-
geneity and dynamics, crucial for advancing immunolog-
ical research and therapeutic development.

Sample classification
Sample classification in immunological research often 
leverages cell subset information and predictive mod-
eling using single-cell data to enhance the precision of 
diagnostics and treatment strategies [53]. By utilizing 
cell subset information, ML-driven methods, includ-
ing CITRUS and FloReMi, can categorize samples based 
on distinct immunological profiles, facilitating a deeper 
understanding of immune responses across different con-
ditions, such as immune responses to cancer immuno-
therapy [60]. Predictive modeling of CellCNN and Deep 
CNN, using single-cell data, allows for the identification 
of unique cellular signatures that correlate with specific 
disease states or therapeutic responses [53, 61]. This 
approach improves the predictive accuracy for patient 
outcomes, enabling the development of personalized 
treatment plans that are tailored to individual immuno-
logical profiles.

AI for immunofluorescence image analysis
ML has significantly advanced the analysis of immuno-
fluorescence images, offering enhanced accuracy and effi-
ciency in identifying and classifying cellular patterns.

Our group developed an AI-based models to recog-
nize competent-level antinuclear antibody (ANA) pat-
terns and mixed patterns on human epithelial (HEp-2) 
cell images according to the International Consensus 
on ANA Patterns (ICAP) standards [62]. A large data-
set of 51,694 HEp-2 cell images with patterns assigned 
by experienced technologists was used to train six deep 
convolutional neural network (CNN) architectures. The 
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InceptionResNetV2 model achieved the highest F1 score 
of 0.86 and kappa of 0.82 on a testing set, demonstrat-
ing excellent agreement with experienced human read-
ers for recognizing 11 ICAP competent-level patterns as 
well as mixed patterns containing up to four overlapping 
patterns. This highlights the potential of applying trans-
fer learning and fine-tuning publicly available pre-trained 
CNN models on large clinically-relevant datasets to 
develop robust automated systems for immunofluores-
cence image analysis and ANA pattern recognition.

Cytokine, chemokine and protein analysis
AI’s applications in immunology extend to identifying 
immune system cell patterns, biomarkers, and thera-
peutic targets. For instance, ML models are increasingly 
used to analyze cytokine, chemokine profiles and pro-
tein microarray data, which are critical mediators of 
immunotherapeutic outcome [63]. Our group has dem-
onstrated how ML algorithms can identify patterns 
and correlations within protein expression profiles that 
may not be evident through traditional analysis meth-
ods [64]. These algorithms, including support vector 
machines and random forests, can classify proteins based 
on their expression levels, predict potential biomarkers, 
and facilitate the understanding of immunogenicity for 
anti-tumor necrosis factor (TNF)-αbiological therapy 
in patients with rheumatoid arthritis. By integrating AI 
with cytokine and chemokine data, researchers can now 
predict how different individuals’ immune systems might 
react to specific diseases or treatments, facilitating the 
development of targeted therapies.

Overall, AI-driven analysis not only enhances the dis-
covery of new biomarkers and therapeutic targets but 
also improves the accuracy and efficiency of immunolog-
ical research, paving the way for advanced personalized 
treatments in immunology.

Integration of AI in precision medicine
Synergistic approach to integrating AI analysis of health 
records, genetics, and immunology data
The integration of AI into precision medicine is not just 
about leveraging AI in isolated clinical applications but 
about creating a synergistic approach that encompasses 
health records, genetics, and immunology data. By apply-
ing AI algorithms across these diverse data sets, clini-
cians can gain a holistic view of a patient’s health status 
and potential risks. ML models are proving invaluable in 
identifying high-risk patients in need of rheumatology 
testing by analyzing EHRs. According to the study pub-
lished in Nature Communications by Forrest et al., an ML 
model was developed to predict the necessity for autoim-
mune disease testing [65]. The model demonstrated high 
accuracy in identifying patients who should undergo 

rheumatological evaluation by analyzing longitudinal 
EHR data from over 161,584 individuals. This approach 
allowed for earlier detection of the need for autoantibody 
testing and rheumatology encounters, identifying at-risk 
patients up to 5  years before traditional clinical assess-
ments would typically do so, thereby accelerating diagno-
sis and treatment of autoimmune conditions.

Moreover, ML models can significantly enhance the 
diagnosis of systemic lupus erythematosus (SLE) by 
integrating EHRs, genomic data, and immunofluores-
cence image datasets. From our study published in Bio-
Data Mining, ML approaches such as Random Forest 
and Extreme Gradient Boosting were utilized to analyze 
data from patients with positive ANA [66]. These mod-
els effectively identified SLE patients by evaluating clini-
cal features, genomic variations, and specific patterns 
in immunofluorescence images. Furthermore, the study 
identified genetic variations associated with lupus in 
patients with high and low titer ANA, providing deeper 
mechanistic insights into the disease. The integration of 
these diverse data sources enables more accurate and 
timely diagnosis of SLE, facilitating better patient man-
agement and treatment outcomes. This AI-supported 
approach enables the development of highly personalized 
treatment plans that are predictive, preventive, personal-
ized, and participatory (P4 medicine). Such multi-modal 
integration not only emphasize the diagnostic process 
but also enhances the accuracy of treatment outcomes, 
making it a cornerstone of modern healthcare strategies 
[67].

Examples of AI‑driven precision medicine platforms 
and tools for clinical decision support in rheumatology
Several AI-driven platforms and tools have been devel-
oped to assist healthcare providers in clinical decision-
making [68, 69]. One notable example is IBM Watson 
Health, which analyzes the meaning and context of struc-
tured and unstructured data in clinical notes and reports 
to provide personalized treatment recommendations 
[70]. Another is Google’s DeepMind Health, which has 
developed AI systems for analyzing medical images and 
electronic health records to support clinical decisions 
[71].

In the field of rheumatology, AI is being applied to 
enable more precise diagnosis and treatment selection 
for patients with rheumatic diseases. One example is 
an AI-driven precision medicine platform designed to 
quantify radiographic damage and optimize therapeutic 
strategies for RA patients [72]. It has demonstrated sig-
nificant improvements in identifying effective treatments 
for individual patients, thereby enhancing personalized 
care. Researchers at Stanford have developed an AI plat-
form called REVAMP that integrates multi-omics data 
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like genomics and proteomics to stratify patients with 
autoimmune diseases and match them to appropriate 
therapies [73]. Guan et al. discovered that ML algorithms 
could predict disease progression and response to ther-
apy in RA patients taking anti-TNF-α inhibitors based on 
clinical and genomic data. By using AI to analyze com-
plex biomedical information, these platforms clearly 
facilitate precision rheumatology and optimize care for 
patients based on their specific disease characteristics 
and molecular profiles.

Evaluation of real‑world outcomes and clinical benefits 
of AI‑driven precision medicine approaches
Evaluating the real-world outcomes and clinical benefits 
of AI-driven precision medicine approaches is crucial 
for their successful implementation in rheumatology 
practice. A study by Lezcano-Valverde et  al. demon-
strated that an ML model based on Random Survival 
Forests (RSF) could accurately predict the risk of mortal-
ity in patients with RA using clinical and serological data 
[74]. Another study by Myasoedova et  al. showed that 
a supervised ML method could predict the response to 
methotrexate in patients with RA based on clinical and 
pharmacogenomic data, enabling clinicians to make 
informed decisions about treatment initiation and opti-
mization [75]. These studies provide evidence for the 
clinical benefits and real-world impact of AI-driven pre-
cision medicine approaches in rheumatology with poten-
tial to revolutionize future patient care and outcomes.

Challenges and considerations
During the implementation of AI based on real world 
EHRs, several key challenges were encountered. Firstly, 
EHR data is often messy, inconsistent, and incomplete, 
making it crucial to ensure high-quality, standardized 
data for AI training. This requires significant preproc-
essing and cleaning efforts. For examples, the pre-
processing steps to extract simple Blood Pressure (BP) 
values from clinical notes, structured fields, or imaging 
reports include standardizing all values to a consistent 
format like “120/80 mmHg” with uniform units. Outlier 
detection identifies extreme values (e.g., BP > 200/120 
mmHg) for review, while missing BP readings are 
addressed by either imputing from patient history or 
neighboring values when appropriate. Quality assur-
ance involves validating BP values against accepted 
ranges (e.g., systolic < 140 mmHg, diastolic < 90 mmHg), 
checking for temporal consistency (e.g., sudden BP 
spikes or drops), and detecting anomalies (e.g., negative 
BP values). Once cleaned and standardized, BP data 
can then be used for AI model training, enabling ML 
models to learn patterns, predict hypertension risk, and 
monitor patient health. This preprocessing approach 

applies to various EHR data elements like labs, medica-
tions, and diagnoses, ensuring reliable AI training for 
better predictability and better patient outcomes.

Rigorous testing and validation are necessary to 
ensure AI algorithms perform accurately and safely 
in clinical settings, involving extensive training on 
diverse datasets and continuous monitoring for refine-
ment. Best practices include using a diverse and repre-
sentative dataset that mirrors real-world scenarios and 
includes varied demographics, contexts, and edge cases 
(e.g. under represented population). Continuous moni-
toring is necessary to track the AI model’s performance 
post-deployment, detecting any drift or degradation 
in accuracy over time. Additionally, bias detection and 
mitigation are essential; analyzing data for biases such 
as racial, gender, or socioeconomic disparities and 
implementing strategies to minimize their impact on 
model predictions is critical. Robust testing should sim-
ulate diverse scenarios and edge cases to verify that the 
model performs well across different situations. These 
practices help maintain high performance and reliabil-
ity as well as trustworthy in AI algorithms [76, 77].

Secondly, balancing AI insights with patient privacy is 
essential. Protecting sensitive patient information while 
leveraging data for AI necessitates strict adherence to 
data security protocols and ethical guidelines, ensuring 
patient trust. Ensuring compliance with privacy regu-
lations is vital for organizations. Best practices include 
staying informed by continuously monitoring changes in 
laws and regulations and educating your team about pri-
vacy requirements. Hiring data privacy professionals who 
understand regulations can effectively guide compliance 
efforts. Implementing controls such as regularly review-
ing policies and procedures to ensure alignment with 
laws and being transparent about data handling practices 
is essential. Investing in robust security systems to pro-
tect sensitive information and limiting access to author-
ized personnel enhance data security. Establishing a 
process for reporting non-compliance and defining clear 
escalation paths for addressing violations ensure prompt 
and effective responses to any breaches. These practices 
collectively help maintain compliance with privacy regu-
lations [78].

Thirdly, convincing healthcare professionals to trust 
and adopt AI recommendations is challenging. Devel-
oping user-friendly interfaces and clearly demonstrating 
the benefits of AI, such as improved diagnostic accuracy 
and workflow efficiency, are crucial for gaining clini-
cian acceptance and integration into their daily practice. 
Addressing these challenges is essential for the success-
ful implementation and utilization of AI in EHR systems, 
ultimately enhancing healthcare delivery and patient out-
comes [79].
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Finally, while AI holds great promise in clinical deci-
sion support, it’s essential to address potential risks and 
ethical concerns. Recent studies have highlighted several 
critical considerations [80, 81]: (1) The risk of AI systems 
perpetuating or amplifying existing healthcare disparities 
if trained on biased datasets, (2) The potential for over-
reliance on AI recommendations leading to decreased 
clinical autonomy and judgment, (3) The challenge of 
maintaining transparency in AI decision-making pro-
cesses, particularly with complex ‘black box’ algorithms, 
and (4) The need for clear accountability frameworks 
when AI systems contribute to clinical decisions. These 
concerns necessitate careful implementation strate-
gies that prioritize patient safety, maintain physician 
autonomy, and ensure equitable care delivery. Health-
care organizations must establish clear protocols for AI 
system validation, regular performance monitoring, and 
mechanisms to detect and address potential biases or 
errors in AI recommendations. Additionally, clinicians 
should be trained to appropriately interpret and critically 
evaluate AI-generated suggestions within the context of 
their clinical expertise and patient-specific factors.

Conclusion
In conclusion, this review highlights the transforma-
tive potential of AI-driven precision medicine, inte-
grating health records, genetics, and immunology data. 
By analyzing vast and complex datasets, AI enables 
unprecedented insights into disease mechanisms and 
patient-specific responses, facilitating accurate diagnoses 
and personalized treatments. To fully utilize AI’s poten-
tial in revolutionizing healthcare, continued research, 
development, and clinical integration are crucial. Invest-
ing in and adopting AI-driven precision medicine strat-
egies will lead to a new era of personalized patient care 
and medical breakthroughs, ultimately improving out-
comes and driving innovation in rheumatology.
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