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Tumor‑initiating and metastasis‑initiating 
cells of clear‑cell renal cell carcinoma
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Abstract 

Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of kidney malignancy. ccRCC is considered 
a major health concern worldwide because its numbers of incidences and deaths continue to rise and are pre‑
dicted to continue rising in the foreseeable future. Therefore new strategy for early diagnosis and therapeutics 
for this disease is urgently needed. The discovery of cancer stem cells (CSCs) offers hope for early cancer detection 
and treatment. However, there has been no definitive identification of these cancer progenitors for ccRCC. A majority 
of ccRCC is characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene function. Recent advances 
in genome analyses of ccRCC indicate that in ccRCC, tumor-initiating cells (TICs) and metastasis-initiating cells 
(MICs) are two distinct groups of progenitors. MICs result from various genetic changes during subclonal evolution, 
while TICs reside in the stem of the ccRCC phylogenetic tree of clonal development. TICs likely originate from kid‑
ney tubule progenitor cells bearing VHL gene inactivation, including chromatin 3p loss. Recent studies also point 
to the importance of microenvironment reconstituted by the VHL-deficient kidney tubule cells in promoting ccRCC 
initiation and progression. These understandings should help define the progenitors of ccRCC and facilitate early 
detection and treatment of this disease.
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Background
Clear-cell renal cell carcinoma (ccRCC) constitutes the 
majority (up to 70%) of primary RCC [1–3]. Many ccRCC 
patients present notable symptoms (hematuria, anemia, 
cachexia, and flank pain) only in advanced stages [4], 
making early treatment difficult. The majority (50–60%) 
of ccRCC cases are diagnosed incidentally via noninva-
sive imaging, and 30–50% of the cases are diagnosed 
at metastatic stages [5]. Notably, while the 5-year sur-
vival rate of early-stage ccRCC can be up to 90%, that of 

metastasized ccRCC is only about 12% [5]. These statis-
tics point to the need for early detection and treatment 
of ccRCC.

The first critical genetic event of sporadic ccRCC is 
the haploid loss of the short arm of chromosome 3 (3p 
loss), which is detected in almost 90% of patients [6, 7]. 
The genomic region of 3p loss encompasses four well-
recognized tumor suppressor genes (VHL, PBRM1, 
BAP1, and SETD2) [8–11]. Inactivating mutations (loss-
of-heterozygosity) or epigenetic changes (mainly pro-
moter hypermethylation) of the tumor suppressor gene 
VHL in particular are the main drivers of ccRCC, while 
loss of PBRM1, BAP1 or SETD2 is subordinate to VHL 
loss [12, 13]. Interestingly, PBRM1, BAP1, and SETD2 are 
involved in chromatin remodeling, suggesting that wide-
spread epigenetic changes, not specific genetic muta-
tions besides those in VHL, can contribute to ccRCC 
formation.
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Currently, computed tomography and magnetic reso-
nance imaging are the mainstays of ccRCC diagnosis 
[14, 15]. Yet, these two methods’ clinical application and 
prediction process are costly and still largely depend-
ent on subjective human interpretation. One obsta-
cle to accessible diagnostic strategy is that there are as 
yet no proven biomarkers for early-stage ccRCC. Even 
though various potential markers have been proposed, 
very few proved useful in clinical settings [16–18]. One 
promising diagnostic strategy may be based on the dis-
covery that early ccRCC shared common serum/urinary 
inflammatory signatures with chronic kidney disease 
(CKD). Indeed, mounting evidence has implicated tis-
sue inflammation in the tumorigenesis of ccRCC [19–
23], and CKD has proved an important risk factor for 
ccRCC [24, 25]. However, accessible methods that can 
differentiate inflammatory kidney disease and early kid-
ney cancer remain elusive. For this purpose, the pres-
ence of cancer stem/progenitor cells, combined with 
kidney inflammatory markers may offer an opportunity 
for early diagnosis [26–28]. The potential inflammatory 
markers include interleukin-6 (IL-6), a prominent tissue 
and serum inflammatory cytokine [29, 30]; kidney injury 
molecule-1 [KIM-1, also known as T-cell Ig and mucin 
domain-1 (TIM-1)], a serum and urine biomarker for 
human renal tubule injuries and kidney cancer [31, 32]; 
neutrophil  gelatinase-associated lipocalin [NGAL, also 
known as lipocalin2 (LCN2)], a tissue and serum marker 
associated with inflammatory disease and cancer [33, 34]; 
and fibroblast growth factor 23 (FGF23), a growth factor 
involved in decreasing reabsorption of phosphate in the 
kidney and a marker for kidney disease [35, 36].

Cancer stem cells: are they tumor‑initiating 
or metastasis‑initiating cells?
The CSC theory originated from the study of teratocarci-
noma, in which the cancerous growth contains a mixture 
of differently differentiated cell types [37]. The theory 
suggests that there exists a self-renewing primordial cell 
population that gives rise to the tumor mass containing 
progenies with different degrees of differentiation, while 
the progenitor clone can also directly give rise to malig-
nant cancer, hence the term CSC. The theory therefore 
can also explain the conundrum that in clinical settings, 
occasionally metastasis can occur before the primary 
tumor is detected.

Indeed, CSCs have now been identified in a wide 
range of cancers [38]. However, whether the currently 
used term CSCs truly indicates the progenitor cells that 
initiate the growth of a tumor remains unresolved. The 
debate is also still ongoing as to whether malignant can-
cer originates from CSCs or is the result of clonal evolu-
tion [39], since with the exception of rare fast growing, 

highly aggressive cancer cases, the development of cancer 
malignancy is time-dependent and can be correlated with 
the size of primary tumors. This suggests that the hierar-
chical clonal evolution model, as opposed to the model of 
preexisting CSCs, may still be valid. One of the problems 
likely lies in the interchangeable usage of CSCs to depict 
TICs and MICs, because of the unspecified distinction 
between the two populations. In the case of ccRCC, it has 
been observed that not all VHL-deficient cells develop 
into metastatic ccRCC [40], and loss of chromosomes 9p 
and 14q contributes to ccRCC metastasis subsequent to 
VHL loss [41]. This indicates that VHL loss is necessary 
for tumor growth but insufficient for metastasis. There-
fore such distinction, as will be discussed in this review, 
is relevant in regard to ccRCC. TICs, or sometimes called 
cancer cells of origin, are tumorigenic cells exhibiting fea-
tures of stem cells, whereas MICs, although born from 
TICs, foster additional attributes such as the spread and 
recurrence of malignancy [42].

In this review, we will use the term CSC only when the 
cited literature made no distinction between the origin 
of primary tumor and the origin of metastatic subclone. 
When appropriate, we will use TIC and MIC to specify 
the two events.

The origin of cancer stem cells
Two mechanisms have been proposed to account for the 
origin of CSCs: either they are mutated adult stem cells 
(normal stem cells that acquire mutations) or mutated 
differentiated cells that acquire progenitor features 
(Fig. 1). The former can be called “mutated stem cell” the-
ory and the latter “dedifferentiated mutant cell” theory.

In the “mutated stem cell” theory, the origin of CSCs is 
adult stem cells that accumulate pro-tumorigenic muta-
tions. From whole-genome sequencing of adult stem 
cells (clonal organoid cultures derived from primary 
multipotent cells) of the small intestine, colon, and liver 
of human donors with ages ranging from 3 to 87  years, 
it was revealed that mutations accumulate steadily over 
time, at a rate of approximately 40 mutations per year 
[43]. It is therefore conceivable that a “right hit,” or a 
combination of critical hits, in the adult tissue stem cells 
can render these stem cells tumorigenic. For example, 
deletion of Apc in long-lived Lgr5+ intestinal stem cells 
leads to transformation of the stem cells within days. 
The transformed stem cells remain at the crypt bottom, 
forming microadenomas exhibiting unimpeded growth, 
and become macroscopic adenomas within 3–5  weeks. 
Importantly, the same Apc deletion fails to drive intesti-
nal adenoma formation when introduced in more differ-
entiated cells [44].

In the “dedifferentiated mutant cell” theory, mutations 
accumulated in differentiated cells can induce cellular 
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changes such as epithelial-to-mesenchymal transition 
(EMT) that transforms the benign cells into malignant, 
dedifferentiated cells. In a landmark study, Mani et  al. 
[45] demonstrated that the transformed human mam-
mary epithelial cells showed transplantable tumor forma-
tion and metastasis-initiating ability through activation 

of EMT (ectopic induction of TGF-β signaling or ectopic 
expression of either Twist or Snail transcription fac-
tors). This study reconciled two seemingly contradictory 
aspects of cancer initiation: if cancer stem cells exist at 
the beginning of cancer formation, why the develop-
ment of malignant cancer is largely time-dependent? 
The answer therefore lies in the need to accumulate the 
“right” mutations that induce, in the case of Mani et  al. 
study, EMT, or other oncogenic processes. Besides EMT, 
differentiated cells can also be reprogrammed to exhibit 
tumorigenic potential by activation of c-MYC and other 
“Yamanaka factors” including OCT3/4, SOX2, and KLF4 
[46–50]. These findings also explain why in the studies 
using clonal selection of metastatic cancer cells, multiple 
and often inconsistent candidates of CSCs have been the 
result, since there may be more than one genetic path-
ways that can induce malignancy.

The implication of these studies suggests that TICs and 
MICs reside in temporally different loci during progres-
sion of cancer. The genomic sequencing of a large cohort 
of ccRCC samples [41, 51], including normal-metastasis 
pairs, has suggested that an alternative model is likely 
the case for ccRCC (Fig.  1); that is, mutated stem cells 
give rise to TICs that form the stem of the phylogenetic 
tree of primary tumor growth, while dedifferentiated 
mutant cells initiate the process of subclonal evolution 
from which the metastatic subclone eventually emerges 
(Fig. 2). Therefore, the presence of TICs or their molecu-
lar signature can serve as early diagnostic markers and 
treatment targets; while MICs may be the targets for 
treatment against metastasis of already developed tumor 
mass. Next, we will discuss the nature of ccRCC stem/
progenitor cells.

CSCs of ccRCC—the current status
A number of studies have attempted to identify the CSCs 
of ccRCC, with varied and sometimes contradictory 
results. These have been reviewed previously [52–54] and 
are summarized in Table 1. One strategy is to use known 
stem cell/CSC markers to isolate RCC stem/progenitor 
cells from clinical samples or established cell lines using 
fluorescence-activated cell sorting (FACS) or magnetic-
activated cell sorting (MACS). The markers often used 
include the following:

CD105, also named Endoglin, is a receptor for TGF-β 
and therefore is presumed to promote EMT in stem cell 
formation. It is a recognized stem cell marker because 
of its identification as highly expressed in mesenchymal 
stem cells (MSCs) [55]. It is subsequently found to be 
overexpressed in multiple malignant cancers. However, 
the usefulness of relying on CD105 for identifying CSCs 
or TICs may  be questioned since CD105− MSCs also 
exist [56] (also see below).

Fig. 1  An alternative model of the origin of ccRCC. Two mechanisms 
are proposed to explain the origin of CSCs: either they are 
mutated stem cells (left) or dedifferentiated mutant cells (right). 
The former suggests that CSCs originate from adult stem cells 
that accumulate mutations. In the latter theory, cellular changes 
and microenvironmental factors can transform differentiated cells 
into malignant, dedifferentiated cells. The development of ccRCC 
is likely a hybrid model (shaded pathway on the left), in which 
normal stem cells with 2 hits in the VHL gene, one of which involves 
chromosome 3p loss, become TICs. The TICs then undergo subclonal 
evolution to generate metastatic subclone, which constitutes MICs
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CD133, also named Prominin-1, is a surface marker of 
hematopoietic stem cells and endothelial cells, and sub-
sequently found to be expressed in multiple CSCs [57]. 
It can promote self-renewal by activating MAPK, PI3K/
AKT, and WNT signaling pathways. It is also highly 
expressed in metastatic cancer cells. However, not all 
CSCs express CD133 [58].

CD44 is a receptor for hyaluronan and osteopontin, 
and is overexpressed in metastatic and stem cells [59]. It 
is known to promote EMT and can anchor stem cells in 
the niche. As a CSC marker, it is often combined with the 
expression of CD24 [60, 61]. However, there seems to be 
low predictability for cancer stemness since either high 
or low expression of CD44/CD24 combination can be 
found in CSCs in different contexts [62, 63].

CD24 is a P-selectin receptor and is a marker found in 
multiple CSCs. As stated above, it is often used for CSC 
identification in combination with CD44, although its 
accuracy in ccRCC progenitor identification is yet to be 
fully assessed [62, 63].

CXCR4 is a hypoxia- and hypoxia-inducible factor 
(HIF)-induced receptor for the chemokine CXCL12/
stromal cell-derived factor-1 (SDF-1), and is therefore 
a good marker for VHL mutant tumor cells. It has been 
implicated in stem cell retention in the stem cell niche 

as well as in stem cell mobilization, depending on the 
source of the ligand CXCL12/SDF-1—whether the ligand 
is expressed by the abutting niche cells or from the target 
tissue, respectively [64, 65].

These stem cell markers have been used to isolate CSCs 
of ccRCC (Studies 1–7 in Table 1) [66–72]. Particularly, 
CD133 has been suggested as a selective marker for resi-
dent progenitor cells in normal adult human kidney [73–
75], which is an attractive attribute for CSCs. Although 
the tumorigenic role of CD133+ cells has been postulated 
in many solid malignancies, the precise function of these 
progenitor cells in renal carcinogenesis still remains unre-
solved [76–80]. The CD133-expressing cells were indeed 
enriched in the side population (SP) in both normal 
human kidney tissue and human RCC (Study 8 in Table 1) 
[81]. SP is considered stem cell-like because exclusion of 
DNA dye is a recognized phenotype of stem cells owing 
to their elevated efflux activity of ATP-binding cassette 
(ABC) transporter protein family that excretes dyes 
absorbed from the culture medium [82, 83]. These cells 
can be sorted as “side population” because they appear as 
a small group of cells low in DNA dye staining in FACS 
analysis. However, in co-transplantation with RCC cells, 
the tumor-derived CD133+ cells favored vascularization 
and enhanced tumor growth rather than initiating tumor 

Fig. 2  Genomic landscape of ccRCC tumor initiation and metastatic subclonal evolution. Two broadly defined scenarios can account 
for the initiation and progression of ccRCC. The RSPCs, expressing stem/progenitor cell markers such as Notch or Wnt signaling and CD133 
or CD105, first acquire 3p loss (encompassing the VHL tumor suppressor gene), and begin a slow clonal expansion lasting 5–20 years 
before the appearance of TICs when the second allele of VHL is inactivated, which leads to expression of inflammatory markers such as KIM-1 
and HIF targets such as CXCR4. The appearance of TICs initiates subclonal evolution that can last 10–30 years, giving rise to various genetically 
distinct benign subclones, before the emergence of MICs, which is often accompanied by the 9p21.3 loss. In rare cases, TICs, and hence MICs, 
can arise from VHL+ cells. These are not included in this general description. Early appearance (i.e., close to or on the phylogenetic stem) 
of the metastatic subclone characterizes low primary tumor heterogeneity and rapid progression of the disease (left), and late appearance 
(i.e., after multiple subclonal branching events) of metastatic subclone characterizes high primary tumor heterogeneity and slow progression 
of the disease (right). RSPC: renal stem/progenitor cell; RSTC*: pre-tumorigenic RSTC; TIC: tumor-initiating cell; P: heterogeneous primary tumor 
subclones; MIC: metastasis-initiating cell; and M: metastatic subclone. Adapted from Turajlic et al. [41] and Mitchell et al. [51]
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growth of their own lineage in non-obese diabetic/severe 
combined immunodeficiency (NOD/SCID) mice [84]. It 
is probable that CD133+ cells represent a subset of renal 
progenitor cells or MSCs within the tumor, but not a TIC 
or MIC population. This is consistent with another study 
by the same research group, in which the highly tumo-
rigenic human RCC-derived CD105-positive cells lack 
expression of CD133 (Study 1 in Table 1) [66]. Moreover, 
the expression of MSC and embryonic renal cell mark-
ers in these CD105+ clones suggests that the renal CSCs 
may not be of CD133+ origin, but rather originate from 
an undifferentiated CD105+ cell population that retains 
the MSC phenotype in the adult kidney. However, it is 
equally possible that CD105+ and CD133+ populations 
are MIC markers in different metastasis subclones and 
may be mutually exclusive.

Yet another study using RCC cell line SK-RC-42, which 
is derived from bone metastasis of unknown VHL sta-
tus, showed a contradictory result in which CD105 was 
expressed in almost all monolayer adherent cells but 
was reduced in sphere-forming cells (Study 9 in Table 1) 
[85]. Conversely, a subpopulation of Caki-1 RCC cell line 
of VHL wild-type genotype and notably lacking both 
CD105 and CD44, displayed high tumorigenic poten-
tial when implanted into NOD/SCID mice (Study 5 in 
Table 1) [72].

Using functional assays such as SP detection and 
sphere formation may offer less biased criteria for 
isolating TICs, as opposed to utilizing preconceived 
stem cell markers. Some SP studies have indeed iden-
tified other potential stem cell markers. For exam-
ple, in the SPs of various RCC cell lines (Study 10 
in Table  1), ABCB1 transporter has been identified 
as a CSC marker of RCC [86], not surprising since 
the functional assay was based on the ABC activity. 
The human RCC cell lines ACHN, Caki-1, SMKTR2, 
SMKTR3, and murine RenCa cells were analyzed 
for expression of heat shock protein (HSP) 40 family 
member DnaJ (Hsp40) homolog, subfamily B, member 
8 (DNAJB8) in SP (Study 11 in Table  1) [87].  Overex-
pression of DNAJB8 enhances the expression of stem 
cell markers and tumorigenicity. RT-PCR analysis of 
these isolated SP cells showed that  DNAJB8  was pre-
dominantly coexpressed with Yamanaka factors such 
as  SOX2  and  OCT4/POU5F1. Western blotting and 
immunostaining using SP cells also corresponded with 
preferential expression of DNAJB8 protein, confirm-
ing the stem cell-like phenotypes [87]. In addition, SP 
from the cell line ACHN has identified Aldehyde dehy-
drogenase 1 gene (ALDH1) as a potential RCC stem 
cell marker (Study 12 in Table 1) [88], which has been 
implicated as a CSC  marker for various other cancers 
possibly by providing increased drug resistance [89]. 

However, these SP cells from ACHN did not express 
CD105 or CD133, and the other cell line used in the 
same study, KRC/Y, although forming SP, did not show 
increased sphere-forming capacity or increased ALDH1 
expression. It is notable that both ACHN and KRC/Y 
cells are VHL wildtype, but KRY/C is not histologically 
ccRCC and overexpresses mutant TP53.

Other studies using functional assays such as sphere 
formation has also identified a number of markers in the 
putative CSCs in RCC cell lines, including EMT markers 
CXCR4, SDF-1, ZEBs, TWIST, N-cadherin, and Vimen-
tin, as well as canonical stem cell markers such as OCT4, 
NANOG, KLF4, CD24, and CD44 (Studies 13 and 14 in 
Table 1) [90, 91].

Nonetheless, even in these functional assays results 
could be inconsistent. In one study, SP analysis (exclusion 
of Hoechst 33342) on different ccRCC cell lines yielded 
appreciable SP in only one (769-P) of 5 lines (Study 10 in 
Table 1) [86]. While in this study, ABCB1+ SP was identi-
fied in the 769-P cell line, no stem-like cells were isolated 
from the same cell line in another study using sphere 
formation as the identification criterion (Study 14 in 
Table 1) [91]. It is possible that SP and sphere formation 
are different progenitor phenotypes in different cell lines 
with different genetic makeups, including VHL and TP53 
mutant status (Table 2).

Therefore, attempts to identify CSCs from established 
malignant cell lines may be inherently problematic since 
these cells have accumulated numerous genetic modi-
fications to adapt to in  vitro monoculture conditions. 
In addition, these commonly used cell lines are derived 
from renal cancers of different histological features and 
genetic makeups. The characteristics of the various cell 
lines used in the above-summarized studies are listed 
in Table  2. It is quite often that different RCC cell lines 
are used without consideration for their pathological 
and genetic features [92, 93]. For example, ACHN is not 
a ccRCC cell line but a mixed papillary and clear-cell 
morphology, and does not harbor VHL loss-of-function 
mutations, and KRC/Y is of granular and clear-cell histol-
ogy and also VHL wildtype. Their inclusion in the same 
study (Study 12 in Table  1) yielded opposite results, as 
discussed above. Caki-1 and Caki-2, although originally 
isolated from presumed ccRCC patients, are both VHL-
positive, and Caki-2 cells and their derived tumors in 
fact exhibit characteristics of high-grade papillary RCC 
(pRCC) in their histology and gene expression patterns 
[94].

Therefore, the results from studies with use of only 
VHL+ ccRCC cell line (Studies 5 and 12 in Table 1) [72] 
or mixed use of VHL+ and VHL− cell lines (Study 13 in 
Table 1) [91], or mixed use of ccRCC and pRCC cell lines 
(Studies 6, 13, and 14 in Table  1) [70, 90], are difficult 
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to extrapolate with relevance to clinical ccRCC [95]. As 
such, clinical samples should offer a more realistic chance 
to identify genuine tumor progenitor cells.

Many studies using clinical samples as well as cell 
lines implicated CXCR4 as a marker for normal human 
renal progenitor cells and for the tumor progenitor cells 
in ccRCC (Studies 2, 3, 7, and 14 in Table 1) [68, 69, 71, 
91]. The CXCR4+ subpopulation in patient-derived 
xeno-transplantable ccRCC cells display sphere-forming 

capacities and are more tumorigenic in comparison with 
their CXCR4− counterpart. Notably, the expression of 
CXCR4 and its ligand, CXCL12/SDF-1α, is positively 
regulated by HIF that is stabilized and activated in VHL-
deficient ccRCC cells [96, 97].

Canonically, CXCR4 is the receptor of the chemokine 
CXCL12/SDF-1 that induces metastasis [98]. HIF2α-
induced expression of CXCR4 can also promote sphere 
formation and self-renewal of ccRCC cell lines [91]. In 

Table 2  Cell lines used in RCC stem/progenitor cell studiesa

a Cell lines grouped based on the status of VHL gene (mutant or wild-type), and subgrouped according to the histology (ccRCC, light shade; non-ccRCC or mixed, 
darker shade)
b For pathological and genetic features of the cell lines, refer to Wolf et al. [92], Brodaczewska et al. [93], and Sanger Institute COSMIC database
c The NCI-60 cancer cell line panel is a group of ~ 60 human cancer cell lines used by the National Cancer Institute (NCI) for the screening of compounds to detect 
potential anticancer activity, which consists of most representative of in vitro model for the common cancer types
d n.d.: not determined

Cell lineb VHL status Other significant tumorigenic genes 
mutated

Tumor type Characteristics

769-P mutant ABC, BAP1, CXCL12, MAPK kinases, 
NCAM, PDGFR, VEGFC

Primary ccRCC​ Tumorigenic in nude mice
No lung metastases, tumors by SP

786-O mutant PTEN, TP53, FGFR, IL-1, MAPK kinases, 
VEGFC, ABC, FLT1

Primary ccRCC​ NCI-60 panelc

Tumorigenic in nude mice; tumors by SP 
and lung metastases in xenografts

OS-RC-2 mutant ABC, HLA, PBRM1, PTEN, WT1 Metastatic ccRCC​ Tumorigenic in nude mice
TP53 wild-type

Caki-1 wild-type HIF1A, MAPK kinase, MET, MMP9, NCAM, 
VEGFC, ABC, FGFR, HLA, IL-10R, MAPK 
kinases, MET, NES, PIUK3, TRAF

Metastatic ccRCC​ NCI-60 panela

VHL and TP53 wild-type
Sphere formation
Tumorigenic, lung metastases
Tumors with sarcomatoid changes by SP 
in xenografts

SN12C wild-type ABC, E-CDH, EGFR, PGF, TLR5, TP53, 
KDM6A

Mixed granular and clear cell morphol‑
ogy

NCI-60 panelc

VHL wild-type
Tumorigenic in nude mice, liver metas‑
tasis

ACHN wild-type ABCA genes, MAPK kinases, TLR2, NCAM, 
MAPK kinases, PIK3, VEGFC

Metastatic mixed papillary and clear-
cell RCC​

NCI-60 panelc

VHL and TP53 wild-type
Sphere formation
Tumorigenic in nude mice
Tumors by SP in xenografts

Caki-2 wild-type ABC, EGF, FGFR, MAPK kinases, NCAM, 
PDGFR, VEGF, PBRM1

Primary cystic papillary TP53 wild-type
Tumorigenic in nude mice
Tumors by SP

KRC/Y wild-type Mutated and overexpressed p53 Primary, cystic and necrotic, fibrous 
capsule, both clear and granular cells

VHL wild-type
SP equally tumorigenic as Non-SP
Sphere formation

RenCa wild-type n.d.d Spontaneous renal cortical adenocarci‑
noma in BALB/c mice

VHL wild-type
Tumorigenic in syngeneic mice

RCC-26 n.d.d n.d.d Primary stage-I ccRCC (T1, G2) Non-tumorigenic in nude mice

RCC-53 n.d.d n.d.d Primary stage-IV ccRCC​ Tumorigenic in nude mice

SMKT-R2 n.d.d n.d.d Primary mixed alveolar type and clear 
cell

Tumorigenic in nude mice

SMKT-R3 n.d.d n.d.d Primary papillary type and granular cell 
subtype

Tumorigenic in nude mice

SK-RC-39 n.d.d n.d.d Metastatic papillary RCC​ Tumorigenic in nude mice

SK-RC-42 n.d.d n.d.d Metastatic RCC​ Tumorigenic in nude mice
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addition, CXCR4 can also enter the nucleus and inter-
act with nuclear HIF-1α to enhance the expression of 
HIF target genes and promote ccRCC metastasis [99]. As 
such, elevated expression of CXCR4 is significantly asso-
ciated with high-grade and advanced-stage ccRCC, as 
well as high rates of tumor recurrence [100]. Intriguingly, 
the significantly elevated CXCR4 mRNA levels were 
detected in primary ccRCC tumors without metastases, 
but not in metastasized tumor, and were correlated with 
short survival time [68]. This suggests that CXCR4 is a 
predictive marker for tumor aggression and metastasis, 
perhaps being involved in progenitor cell maintenance, 
but not contributing to metastasis directly. The notion is 
consistent with the finding that hypoxia is an important 
feature of stem/progenitor cell niche [101, 102].

It therefore appears that the best strategy for isolating 
TICs of ccRCC is to include known VHL-HIF targets 
in addition to stem cell markers from clinical samples, 
such as the studies of Addla et al. and Fendler et al. [71, 
81], which both identified CXCR4, signaling pathways 
WNT (β-catenin) and NOTCH1, and stem cell marker 
CD133 and PAX2, as signature markers (Studies 3 and 8, 
Table 1).

ccRCC initiation and progression
Sporadic ccRCC tends to be late onset [103, 104]. Mod-
eling of ccRCC progression based on genomic data 
demonstrates that haploid chromosome 3p loss, likely 
in the renal stem/progenitor cells (RSPCs), occurs early 
in childhood or adolescence, representing an initiating 
genetic event that is followed by slow clonal expansion 
in the subsequent 5–20 years [41]. The RSPCs with ini-
tial loss of chromosome 3p can be regarded as pre-tum-
origenic because although they may develop into tumor 
cells, these RSPCs with 3p loss are not fast-growing as 
proliferating tumor cells. Indeed, the initial expansion 
results in only a modest number of progenies (a few 
hundred cells). The TRAcking renal Cancer Evolution 
through therapy (Rx) (TRACERx) study suggests that 
inactivation of the second allele of VHL occurs after 3p 
loss and before subclonal evolution that leads to metas-
tasis [41, 51]. Therefore, inactivation of the second allele 
of VHL likely marks the emergence of TICs and sets off 
tumor growth and subclonal evolution. There is a latency 
period of 10–30  years between the emergence of TICs 
and clinical diagnosis (Fig.  2). Hereditary ccRCC, as in 
the familial VHL disease patients, follows the similar 
genetic trajectory; but since these patients inherit the 
first VHL gene inactivation mutations in the germline, 
the clinical diagnosis of ccRCC is years to decades ear-
lier. Based on this tumor initiation-coupled subclonal 
evolution model (Fig.  1), one can envisage the differ-
ence between tumors with low primary heterogeneity 

and rapid malignant progression, and those with high 
primary heterogeneity and attenuated malignant pro-
gression (Fig.  2). This model also provides a reasonable 
explanation for the difference between TICs and MICs; 
that is, the initial 3p loss combined with loss of the sec-
ond VHL allele can be viewed as the cause of TIC emer-
gence. Following the appearance of TICs, metastatic 
subclones can emerge via different genetic and/or epi-
genetic events. Therefore, if the starting materials for 
isolating CSCs are malignant tumor mass or established 
malignant cell lines, it is likely that different “CSC” mark-
ers will be identified, reflecting the diverse genetic make-
ups of different metastatic subclones. On the other hand, 
TICs can offer a more homogeneous marker set for early 
diagnosis and treatment targets.

These findings also suggest that the TICs of ccRCC may 
indeed be the mutated adult RSPCs, since ccRCC appears 
to originate from a very limited cell population that 
expands to only a few hundred cells when second hit on 
the VHL allele occurs. The existence of RSPCs has been 
suspected since adult kidney is under constant chemi-
cal and mechanical assaults, and tubule repair is a well-
controlled process [105–108]. Acute tubular injury can 
result in extensive tubule epithelial cell death, which is 
usually followed by a regenerative response characterized 
by epithelial cell proliferation [109, 110]. Such repair and 
regeneration processes involve the activation of stem/
progenitor cells.

RSPCs are difficult to identify because of the complex-
ity of the kidney structures and the complex developmen-
tal process. There are up to 26 cell types in mammalian 
adult kidney according to one study [111], including 16 
different specialized epithelial cell types [112]. Some 
recent single-cell analyses have even identified 41 cell 
populations of renal lineage and 32 of non-renal lineage 
in the adult kidney [113], although whether these renal 
lineages are all functionally distinct is not clear.

During embryonic development, the nephrons are 
constructed from existing epithelia (from ureteric buds 
to form collecting ducts) and from metanephric mesen-
chyme via the process of mesenchymal-to-epithelial tran-
sition (to form distal and proximal tubules, and Bowman’s 
capsules) [111, 114, 115]. It has been suggested that each 
distinct segment of the renal tubule system can possess 
its own adult progenitor cells. Alternatively but not exclu-
sively, a special group of progenitor cells can repopulate 
other, more distant regions of the nephron via migration, 
proliferation, and differentiation. Indeed, different adult 
renal progenitor cells have been identified [116, 117]. 
A few studies have also identified potential kidney pro-
genitor cells in the interstitial tissue or mesenchyme [118, 
119]. These studies are summarized in Table  3. Mostly, 
these studies employed functional assays such as label 
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(BrdU)-retention (Studies 1 and 2 in Table 3) [120, 121], 
limiting dilution for proliferative capacity (Studies 3 and 
4 in Table 3) [122, 123], serial dilution for in vitro culture 
(Study 5 in Table 3) [124], outgrowth of cultured kidney 
tissues (Studies 6–8 in Table 3) [74, 75], and SP isolation 
(Study 9 in Table 3) [125]. Some other studies used pre-
conceived stem cell markers for isolation (Studies 10 and 
11 in Table  3) [73, 126, 127]. More recently, single-cell 
RNA sequencing (scRNAseq) was used to identify kidney 
stem cells from urine (Study 12 in Table 3) [128]. These 
studies largely confirmed the presence of known stem cell 
markers such as Yamanaka factors, CD133, CD44, CD24, 
CD106, Sca-1, etc. in the presumptive kidney stem/pro-
genitor cells, which supports using some of these mark-
ers for identifying or validating the presence of TICs in 
RCC.

Therefore, these studies, in aggregate, indicate that 
RSPCs exist in different segments of the renal tubule 
systems. They all exhibit canonical stem/progenitor 
cell activity such as multipotency and clonogenic activ-
ity in prolonged culture in  vitro, and can repopulate 
tubule epithelia in kidney injury models. Although they 
all express a common set of stem/progenitor markers, 
each subpopulation may exhibit differences in specific 
marker gene expression. This may explain the clinical 
and experimental observations that although proximal 
tubule cells are the main origin of ccRCC, other renal 
tubule origins such as distal tubule and subregions of col-
lecting duct can also give rise to ccRCC [40, 129]. Many 
of these RSPCs express NOTCH and/or WNT signaling 
signatures (Studies 3, 4, 9, 11, and 12 in Table 3). Interest-
ingly, NOTCH and WNT signaling pathways appear to 
be important factors for specifying cells with tumor-initi-
ating capacity identified from clinical cohorts that mainly 
include early-stage ccRCC samples [71, 81] (Studies 3 
and 8 in Table 1). As such, a rational approach to validate 
the TICs of ccRCC may be to inactivate VHL specifically 
in one of these RSPCs, and examine the tumor-initiating 
property of the resultant mutant progenitor cells.

Loss of VHL and ccRCC initiation
In sporadic ccRCC, the first genetic event is often the 
haploid 3p loss that generates heterozygous loss of VHL, 
SETD2, PBRM1, and BAP1. The TICs then emerge after 
the loss of the second VHL allele, usually as a result of 
deletion, loss-of-function mutation, or epigenetic inac-
tivation of gene expression. In the hereditary form of 
ccRCC that occurs in the familial VHL disease, the 
genetic/epigenetic events are reversed. That is, the 
patients first inherit VHL inactivating genomic muta-
tions, then acquire loss-of-heterozygosity via 3p loss 
or epigenetic alterations. Therefore, biallelic loss of 
VHL appears to be the essential requirement for ccRCC 

initiation, the rare wild-type VHL ccRCC notwithstand-
ing, and the 3p loss can occur before or coincidental with 
the second VHL allelic loss. Haploid 3p loss likely serves 
as an auxiliary oncogenic change that facilitates the sub-
clonal evolution. Indeed, although haploid 3p loss is 
found in 90% of ccRCC cases, biallelic losses of PBRM1, 
SETD2, and BAP1 are only found in ~ 30–40%, 11%, and 
10% of ccRCC cases, respectively [8, 12]. It is possible 
that haploid-insufficiency of PBRM1, SETD2, and BAP1 
resulting from 3p loss can lead to epigenetic changes and 
facilitate acquisition of the additional hits that lead to 
malignancy. Indeed, heterozygous 3p loss is not unique 
to ccRCC; it is found in a significant number of cases in 
head and neck, breast, and ovarian cancers [130–132]. 
We suggest that the RSPC with biallelic VHL loss can be 
considered TIC of ccRCC. The question then is how loss 
of VHL function can set off the pathogenic process that 
leads to growth of ccRCC?

VHL is not a typical tumor suppressor gene such as 
TP53, PTEN, or Rb that directly regulates cell death or 
proliferation. However, based on previous studies, by act-
ing as a scaffold protein, pVHL does indirectly regulate 
several key events related to tumor progression. These 
oncogenic events, when occurring in RSPCs, can induce 
the formation of TICs.

(1)	 Proliferation. One of the earliest findings concern-
ing the function of VHL is that TGF-α is upregu-
lated in VHL mutant cells [133], which can lead to 
autocrine activation of the PI3K and ERK signaling 
pathways, two canonical inducers of cell prolifera-
tion. Also important, pVHL can suppress regula-
tory-associated protein of mTOR (RAPTOR) thus 
reducing the mTOR signaling [134]. Since mTOR 
is a major inducer of cell growth and proliferation, 
loss of VHL function can lead to increased mTOR 
signaling and tumor growth [6, 8]. Furthermore, the 
most salient characteristic of the VHL mutant cells 
is the hypoxic response induced by the stabilization 
of HIF-α, which results in tumor angiogenesis [via 
overexpression of vascular endothelial growth fac-
tor  (VEGF) and Oncostatin M  (OSM)] and meta-
bolic switch (via reduced oxidative phosphoryla-
tion-based respiration) [23, 135, 136]. Both of these 
changes are critical for tumor growth. Furthermore, 
loss of pVHL can suppress cyclin-dependent kinase 
inhibitor p27kip1 that is involved in cell-cycle arrest 
[137].

(2)	 Apoptosis. It has been documented that VHL can 
inhibit apoptosis via Bcl-2 signaling, suggesting 
that VHL inactivation can lead to increased cell 
death [138]. Conversely, other studies indicate that 
VHL deficiency can promote survival and prolif-
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eration via activation of HIF-1α and other factors 
[139, 140]. Such discrepancy may be related to the 
differential functions of HIF-α isoforms [141, 142]. 
On the other hand, pVHL can promote apopto-
sis in a HIF-independent manner by stabilizing 
p53 via suppressing Mdm2-mediated ubiquitina-
tion and nuclear export of p53. In addition, pVHL 
can increase p53 acetylation, and hence activity, by 
p300 under genotoxic stress [143]. The net result 
is the destabilization and decreased activity of p53 
in VHL-deficient cells. Therefore it is possible that 
under stress conditions, VHL loss-of-function does 
confer cell survival advantages.

(3)	 Genome instability. Genome instability is a dis-
tinguishing feature of tumor cells [144], which is 
important for acquiring necessary mutations that 
promote the formation of metastatic subclones. 
ccRCC is not an exception, but its mutational bur-
den is less severe compared with other cancers 
[145]. Indeed, ccRCC cells do not contain muta-
tions in DNA damage response genes such as 
BRCA1/2 or mismatch repair genes. These obser-
vations indicate that ccRCC may possess a unique 
mechanism for generating genome instability. One 
possible mechanism is related to the microtubule-
stabilizing activity of pVHL [146, 147]. Thus, loss of 
VHL function can result in spindle malformation 
during cytokinesis, leading to chromosome instabil-
ity [148]. In addition, pVHL can induce DNA dam-
age repair of double-stranded breaks via genera-
tion of K63-linked polyubiquitin chains [149] that 
bind to damaged DNA and recruit repair enzymes 
[150]. Loss of VHL results in less efficient repair of 
DNA double-stranded breaks. Interestingly, it has 
also been reported that loss of PBRM1, another 
frequently mutated gene in ccRCC, can relieve the 
severe stress of DNA damages caused by VHL loss 
[151], thus providing a mechanistic explanation for 
the frequent coexistence of VHL and PBRM1 losses.

(4)	 Reconstitution of microenvironment. It has been 
shown that tumor microenvironment plays a criti-
cal role in promoting tumor growth and immune 
evasion [152–154]. In particular, many forms of 
cancer, including ccRCC, have been linked to 
chronic tissue inflammation [21, 155–157]. It has 
recently been demonstrated that loss of VHL can 
generate a hypoxic niche for tumor progenitor cell 
maintenance [102]. Our laboratory has shown that 
loss of VHL function can also induce inflammatory 
response via intracellular ER stress [21]. The inflam-
matory response results in secretion of TNFα fam-
ily of cytokines including IL-6 and OSM that induce 
alternatively activated macrophages and inflamma-

tion of vascular endothelia, respectively [22, 23]. 
The activated macrophages and endothelial cells in 
turn induce immune suppression and tumor cell 
EMT via the expression of PD-L1 and chemokines 
such as CCL18. The above notions are further 
explored in the following section.

Effects of microenvironment
Stem cells are known to require specialized niches for 
maintenance. CSCs have also been proposed to reside 
in a specialized niche, consisting of stromal cells such 
as cancer/carcinoma-associated fibroblasts (CAFs), 
endothelial cells, immune modulating cells including 
macrophages and myeloid-derived suppressor cells, 
reconstituted extracellular matrix, and cytokine-contain-
ing extracellular vesicles [158–160].

In this sense, VHL deficiency may be a unique self-ful-
filling cellular characteristic for generating niches suit-
able for stem/progenitor cells, since loss of VHL function 
leads to HIF stabilization, resulting in hypoxic responses 
that can induce angiogenesis and reconstitute the micro-
environment [102, 161]. It has also been known that 
ccRCC progression is strongly associated with chronic 
inflammation [162]. Such inflammatory microenviron-
ment can facilitate the growth and malignant transforma-
tion of tumor cells [22, 23]. In particular, results from our 
and other laboratories have shown that hypoxic environ-
ment containing VHL-deficient kidney cells can attract 
monocytes and induce macrophage differentiation via 
overproduced IL-6, TGF-β, and VEGF [22, 154, 163], 
which in turn coordinate maintenance and activation of 
CSCs/TICs [160, 164]. VHL mutant cells also activate 
endothelial cells that favor inflammatory reactions via 
overproduced VEGF and OSM [23], which may also serve 
as the vascular niche that is a widely-recognized compo-
nent of stem cells and CSC niche [165]. VHL mutant cells 
also overproduce PDGF-B that activates CAFs in a HIF-
independent and Sp1-dependent manner [166]. CAFs 
produce VEGF, PDGF, TGF-β, EGF, FGF, HGF, CXCL12/
SDF-1, and osteopontin that promote EMT and induce 
angiogenesis important for CSC maintenance. Other 
less well-studied potential CSC niche components such 
as mesenchymal stem cells, neurons, lymphatics, etc., 
require further elucidation.

Besides the cellular components, CXCR4 and CXCL12/
SDF-1 expression is also induced by hypoxia in TICs or 
stromal cells [96, 97], potentially facilitating the mobi-
lization of stem cells. Furthermore, VHL mutant cells 
are known to overproduce fibronectin and collagens 
[167–170] that enrich the extracellular matrix (ECM), 
lysyl oxidase that crosslinks the collagen fibers [171, 172], 
and metalloproteases (MMPs; mainly MMP2, MMP9, 
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and MT1-MMP) that remodel the ECM [173–175]. 
Therefore, although it is not yet known whether RSPCs 
reside in specialized niches, it is entirely possible that the 
importance of VHL inactivation in initiating ccRCC is 
that it can create a favorable microenvironment for the 
emergence of TICs.

As such, crosstalk between TICs of ccRCC and the 
components of the microenvironment is a critical aspect 
of TIC development and maintenance [176]. Such inter-
action is usually mediated through cytokines or growth 
factors, but recently, metabolites such as methionine 
have also been shown to promote CSC/TIC maintenance 
in a paracrine manner [177, 178]. Interestingly, in ccRCC, 
methionine can be supplied by a subpopulation of peri-
cytes expressing platelet-derived growth factor recep-
tor-beta (PDGFR-β) and G-protein-coupled receptor 91 
(GPR91), which are activated by succinate secreted by the 
TICs and received by GPR91 on pericytes [179].

In the case of ccRCC metastasis, in addition to the con-
tributing stromal components described above, it has 
been shown that 9p21.3 loss is a common event in meta-
static subclones [41]. 9p21.3 encompasses tumor sup-
pressor genes CDKN2A/B and the Type I Interferon (IFN) 
gene cluster. Interestingly, 9p21.3 loss has been found 
in 14 different malignant cancer types based on analysis 
of The Cancer Genome Atlas data [180]. In a syngeneic 
mouse model of pancreatic cancer, functional genetic 
study indicates that while loss of the CDKN2A/B genes is 
important for tumor growth, deletion of the Type 1 IFN 
locus is specifically needed for metastasis [181]. However, 
if these cancer cells were injected directly into circula-
tion, deletion of the Type 1 IFN cluster no longer offered 
advantages in metastasis over the Type 1 IFN-positive 
counterparts [181]. This suggests that the consequence 
of Type 1 IFN loss is alteration of the immunogenic 
response in the microenvironment, thus effecting malig-
nant tumor progression. As such, MICs of ccRCC may be 
suppressed by reactivating the immune cells induced by 
Type 1 IFN.

Conclusions and perspectives
In summary, ccRCC initiation is unique in that it 
requires, at a minimum, only loss of VHL function. This 
is achievable because pVHL as a scaffold protein can par-
ticipate in multiple cellular functions involved in different 
aspects of tumorigenesis [182]. Figure 3 shows the model 
that explains the origin of TICs of ccRCC and the for-
mation of MIC subclone. Loss of VHL in normal kidney 
tissue progenitor cells confers TICs the tumor-initiating 
capacity. These cells can be recognized by the markers of 
tissue progenitor cells such as NOTCH or WNT signal-
ing components, and progenitor cell marker CD133, 
PAX2, or CD105, in addition to the VHL-HIF signaling 

target CXCR4, and urine/serum inflammatory markers 
such as KIM-1. MICs then emerge after intrinsic genetic 
changes such as 9p21.3 loss and/or epigenetic changes 
promoted by haploid loss of PBRM1, SETD2, and BAP1. 
Extrinsic factors such as cytokines, growth factors, and 
metabolites emanated from the microenvironment can 
further induce metastatic transformation.

The question remains as to why this unique genetic 
condition only occurs in ccRCC and a few other cases of 
benign tumors, but not in other cancers. There are two 
possibilities. First, the combination of genetic and physi-
ological conditions required for ccRCC formation is only 
suited for the kidney microenvironment, and even only 
in certain populations of the kidney epithelial cells [40]. 
The unique kidney microenvironment may include the 
unique set of resident macrophages that can be induced 
by VHL mutant cells [183]. Alternatively but not exclu-
sively, VHL mutant cells may not survive (and therefore 
no tumor growth) in other tissues. One scenario may be 

Fig. 3  Model of tumor initiation and metastasis initiation of ccRCC. 
Renal stem/progenitor cell (RSPC) experiences chromosome 3p 
loss and begins a slow clonal expansion, followed by loss of the 2nd 
VHL allele, and becomes tumor-initiating cells (TICs). Loss of VHL 
function promotes proliferation, survival, genome instability, 
and reconstitution of the microenvironment, resulting in subclonal 
evolution, which mainly produces heterogeneous subclones 
of benign tumor cells. The subclonal evolution may also be aided 
by epigenetic changes enhanced by the loss of haploid PBRM1, 
SETD2, and BAP1. Chromosome 9p21.3 loss and other genetic events 
such as EMT induction then generate metastasis-initiating cells (MICs)
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that cells with genome instability resulting from VHL 
loss can survive better in kidney because these cells have 
a robust DNA damage response program a priori. Thus 
the balanced cell survival and accumulation of mutations 
may be the key to ccRCC development. More detailed 
analyses of the cellular and molecular characteristics of 
the TICs of ccRCC should answer this question. Under-
standing the origin of the TICs and  MICs for ccRCC 
should offer a novel avenue for early detection and pre-
vention of malignant transformation of this deadly 
disease.
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