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Abstract 

Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial 
role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral 
microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and pro-
mote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, 
with a particular focus on their interactions with the immune system and the resulting implications for cancer 
prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host 
immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. 
Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocat-
ing for the integration of microbiome research into comprehensive cancer therapy frameworks.
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Introduction
The characteristics of survival, proliferation, metasta-
sis, and therapeutic response of tumor cells are not only 
driven by their intrinsic nature but are also greatly influ-
enced by their interactions with the microenvironment 
components. One important component of the micro-
environment is the recently recognized tumor microbi-
ome, which is the latest breakthrough in understanding 
the tumor ecosystem. The presence of microbiomes has 
been confirmed in tumor masses that were previously 
thought to be sterile [1]. Microbiomes can interact with 
host cells and affect tumor development through a vari-
ety of mechanisms [2, 3]. Notably, tumor microbiota can 
mediate communication between the immune system 
and host cells [4]. A coevolutionary relationship exists 
between the tumor microbiome and the innate or adap-
tive immune system, which can affect tumor progres-
sion through direct and indirect interactions between 
tumor and immune cells, such as the induction of met-
abolic inflammation [5]. Furthermore, host-microbial 
characteristics can predict tumorigenesis, modulate 
the efficacy and toxicity of tumor immunotherapy, and 

predict the prognosis of patients with tumors [6–8]. In 
this review, we introduce the characteristics of the intra-
tumoral microbiome, summarize existing and potentially 
applicable research techniques in the field of the tumor 
microbiome, emphasize the immune regulatory role of 
the intratumoral microbiome, and discuss approaches 
to enhance the efficacy of cancer therapy through the 
modulation of the intratumoral microbiome. Finally, 
we discuss the challenges and prospects of studying the 
intratumoral microbiome.

Detection, identification, and culture 
of the intratumoral microbiome
Since the discovery of microbiota within tumors, there 
has been a rapid influx of researchers aiming to eluci-
date their roles in tumors. Although some progress 
has been made, with the tumor microbiome display-
ing considerable potential as both a diagnostic bio-
marker and a therapeutic target in cancer, the limited 
biomass of these microbes has impeded the advance-
ment of related research. To enhance the feasibility of 
utilizing intratumoral microbiomes in tumor diagnosis 
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and treatment, it is imperative to precisely detect and 
identify low-abundance microbial populations within 
tumors, followed by their cultivation for the analysis 
and verification of their biological functions, thereby 
revealing microbiota-host interactions in the tumor 
microenvironment (Fig.  1). In recent years, alongside 
conventional methods for microbial detection, identifi-
cation, and culture, novel approaches have emerged to 
meet the research demands concerning tumor microbi-
omes. The subsequent sections offer a comprehensive 
overview of established and recently developed meth-
ods and their applications for the detection, identifica-
tion, and cultivation of tumor microbiomes (Table 1).

Detection methods
Methods based on in situ hybridization
Fluorescence in  situ hybridization (FISH) is a widely 
employed molecular cytogenetic technique for the 
detection, identification, and localization of bacterial 
16S rRNA genes using highly complementary fluores-
cent DNA probes with high sensitivity and specificity [9, 
10]. FISH plays a crucial role in the detection of intratu-
moral microbiota. Chai et al. successfully employed FISH 
to detect bacteria such as Klebsiella pneumoniae and 
Paraburkholderia fungorum in intrahepatic cholangio-
carcinoma [11]. Nevertheless, the original FISH method 
often exhibits a low signal strength because of inadequate 

Fig. 1  Promising technologies for the detection, identification, and culture of intratumoral microbiome for revealing the interactions 
between intratumoral bacteria and tumors
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cell permeability and limited nucleic acid copy num-
bers [12]. Therefore, a novel FISH technique called 
RNAscope-FISH has been developed, which can amplify 
signals while suppressing background noise, enabling the 
visualization of individual molecules within a single cell. 
This technique has been successfully applied to confirm 
the heterogeneous spatial distribution of bacterial com-
munities, such as Fusobacterium nucleatum (F. nuclea-
tum), in colorectal cancer (CRC) [13, 14].

Methods based on immunology
Immunohistochemistry (IHC) and immunofluorescence 
(IF) techniques rely on the principle of specific bind-
ing between antigens and antibodies. In IHC, labeled 
antibodies produce color through chemical reactions, 
whereas IF utilizes fluorescent materials to qualitatively 
and quantitatively detect antigens in tissues. Currently, 
both technologies are used to detect bacteria in tumor 
tissue sections. Wu et  al. successfully labeled bacterial 
colonization sites in tumor and para-carcinoma tissues 
of esophageal squamous cell carcinoma using antibod-
ies against bacterial lipopolysaccharides (LPS) and 
lipoteichoic acid (LTA) [15]. Additionally, researchers 
further optimized and improved immunology to develop 
a multiplex rapid semi-quantitative method, prokary-
otic and eukaryotic cell hybrid probes for in  situ imag-
ing (PEHPSI), which can not only characterize bacteria 
but also detect immune and breast cancer cell subtypes. 
Using this technology, it was found that immune cells or 
breast cancer cell functional biomarkers in bacterial-rich 
areas of different breast cancer subtypes were upregu-
lated or downregulated to varying degrees [16], which 
provides an alternative method to analyze the crosstalk 
among cancer cells, immune cells, and intratumoral 
bacteria.

Methods based on microscope
Fluorescence microscopy can be used to determine the 
presence of bacteria by identifying fluorescently labeled 
tumor tissue sections; however, it does not provide visu-
alization of the bacteria. In contrast, electron micros-
copy enables observation of bacterial morphology. Chai 
et al. employed transmission electron microscopy (TEM) 
to observe bacteria in the tumor tissues of intrahepatic 
cholangiocarcinoma and could visualize the morphology 
of bacteria encapsulated within the lysosome and the out-
line of the bacteria digested by the lysosome [11]. Scan-
ning electron microscopy (SEM) is also applicable and 
is commonly employed to observe culturable bacteria in 
tumor tissues [15]; however, it has limitations in observ-
ing complex samples and internal fine structures. Cor-
relative light and electron microscopy (CLEM) effectively 
combines the advantages of fluorescence microscopy 

and electron microscopy, while minimizing their limita-
tions. This enables the acquisition of cellular functional 
and ultrastructural information with high specificity and 
resolution, thereby facilitating the localization of intratu-
moral bacteria. Kalaora et al. used CLEM to confirm that 
bacteria can enter melanoma cells [17]. This technique 
has emerged as one of the most effective options for 
observing bacteria in tumors. Furthermore, the recently 
emerged correlative focused ion beam/scanning electron 
microscopy (c-FIB/SEM) combines multidimensional flu-
orescence microscopy and volume electron microscopy 
to investigate host-microbe interactions at the 3D ultras-
tructural level [18]. This technique is expected to be dem-
onstrated in future studies on the tumor microbiome.

3D imaging technology based on tissue clearing
Tissue-clearing techniques render the entire tissue trans-
parent and minimize light scattering and absorption, 
thereby improving optical imaging and enabling the 3D 
visualization of tissues and organs [19, 20]. Currently, 
tissue-clearing techniques and bacterial labeling are 
extensively employed for in situ 3D imaging of microbi-
ota. For example, microbial identification using the pas-
sive clarity technique with hybridization chain reaction 
(MiPACT-HCR) can visualize bacteria in transparent 
sputum samples [21]. A strategy based on tissue clear-
ance and d-amino acid labeling (TiDaL), which detects 
metabolically active bacteria, enables 3D imaging of the 
microbiota within small intestinal crypts that were pre-
viously considered sterile [22]. To further investigate 
intratumoral bacteria, researchers have integrated tis-
sue clearing, immunofluorescence labeling, optical sec-
tioning microscopy, and image processing to develop a 
three-dimensional (3D) quantitative in situ intratumoral 
microbiome imaging strategy. This approach enables 
the visualization of bacterial LPS fluorescence signals 
in human glioma samples [23]. These continually opti-
mized and enhanced imaging techniques have opened up 
new possibilities for imaging low-biomass intratumoral 
bacteria.

Raman spectrum
Raman spectroscopy, utilizing a vibrational spectrum, 
enables noninvasive and label-free detection of bacte-
ria by comparing the bacterial chemical composition 
or bacterium-secreted compounds [24]. This technique 
is commonly used to investigate microbial phenotypes 
and function [25]. By leveraging the high specificity 
and spatial resolution of Raman microspectroscopy, 
researchers have successfully detected the distribution 
of Staphylococcus aureus within endothelial cells [26] 
and determined the location of Mycobacterium gordonae 
in macrophages. The potential of Raman spectroscopy 
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for investigating host niche dynamics has also been 
confirmed [27]. In recent years, microfluidic and flow 
cytometry-based single-cell Raman technologies have 
been developed to provide abundant intrinsic informa-
tion about cells and reflect their genotype, phenotype, 
and physiological state [28]. The Clinical Antimicrobial 
Susceptibility Test Ramanometry for H. pylori (CAST-
R-HP) technique, based on single-cell Raman spectros-
copy, enables the rapid detection of H. pylori in clinical 
biopsy samples. Establishing a connection between the 
metabolic phenotype and the corresponding resist-
ance genotype at a single-cell resolution facilitates the 
rapid diagnosis and treatment of H. pylori infection [29], 
which lays the foundation for its application in the field of 
tumor microbiome research.

Identification methods
Methods based on genome sequencing
Genome sequencing includes metagenomic, whole-
exome, and targeted sequencing; among these, 16S rRNA 
gene sequencing and metagenomic sequencing are the 
most frequently employed techniques for identifying the 
tumor microbiome. The 16S rRNA is a component of the 
30S subunit of bacterial and archaeal ribosomes and is 
highly conserved and specific. Hypervariable regions can 
reflect interspecific differences and identify bacterial spe-
cies, among which hypervariable region 4 (V4) exhibits 
the highest specificity and is the optimal choice for bacte-
rial diversity analyses [30, 31]. However, sequencing the 
16S rRNA gene in a single variable region presents issues 
such as primer bias and limited coverage [32]. Conse-
quently, multiple 16S rDNA sequencing approaches 
have been developed, such as 5R 16S rDNA sequenc-
ing, which enable the identification of the microbiome 
within breast tumors with high coverage and resolution 
[1]. 16S rRNA gene sequencing targets known bacteria 
and typically identifies them only at the genus level. In 
contrast, metagenomic sequencing can detect all DNA in 
tumor tissue samples, including all microorganisms and 
host DNA, enabling the identification of microorganisms 
at the species or strain level [10, 33–35]. However, this 
method incurs higher costs. Building upon this, research-
ers have developed a simplified metagenome technology 
named 2bRAD sequencing for microbiome (2bRAD-
M), which enables cost-effective and efficient process-
ing of samples with low microbial biomass, severe DNA 
degradation, and high host contamination. It provides 
qualitative and quantitative results at the species level for 
bacteria, archaea, and fungi [36]. This technique has been 
preliminarily applied in the field of tumor microbiome 
research to analyze the differences in microbial distri-
bution between ovarian cancer and normal tissues [37]. 
Another PCR-based method, IS-pro, enables the rapid 

detection of bacterial DNA [38]. It can identify species, 
including those that have not been detected in culture, 
thereby potentially providing a more accurate represen-
tation of the actual microbial composition within a living 
body [39]. The analysis of different cell types and states 
at the single-cell level enables a more in-depth study of 
tumor microbiome heterogeneity. Microbe sequencing 
(microbe-seq), a single-cell microbial genome sequencing 
technology, has recently emerged. It integrates various 
drop microfluidic manipulation techniques and custom-
developed bioinformatic analysis methods. Microbe-seq 
can be used to obtain genomic information from tens 
of thousands of single-cell microorganisms, without 
the need for culture. This technology provides an effec-
tive and practical approach for characterizing complex 
microbial communities at a single-cell resolution [40].

Methods based on transcriptome sequencing
Since single-cell RNA-seq was first reported in 2009, this 
technique has rapidly developed and has found wide-
spread application in the detection of cell diversity within 
complex eukaryotic tissues. However, the low mRNA 
content of bacteria and the lack of 3′-end poly(A) tails 
have posed significant challenges to single-cell tran-
scriptomic detection of microorganisms [41]. Prokary-
otic Expression-profiling by Tagging RNA In  Situ and 
sequencing (PETRI-seq) [42] based on in situ combinato-
rial indexing and microbial split-pool ligation transcrip-
tomics (MicroSPLiT) [43] based on split-pool barcoding 
solve this problem, enabling single-cell detection of both 
gram-positive and gram-negative bacteria. These tech-
niques can also be used to analyze the heterogeneous 
transcriptional states of the microbiome. However, the 
throughput of these methods is limited, and the sequenc-
ing cost is high because of the presence of rRNA. Conse-
quently, high-throughput and high-sensitivity microbial 
single-cell transcriptome sequencing technologies based 
on droplets, namely BacDrop and smRandom-seq, have 
been developed that can effectively eliminate rRNA and 
concentrate mRNA, achieve precise targeting of micro-
bial-host interaction target subsets, and reduce sequenc-
ing costs by at least ten-fold [41, 44]. These advancements 
have significantly enhanced the prospects for clinical 
translation. Additionally, researchers have developed 
invasion-adhesion-directed expression sequencing 
(INVADEseq) and scDual-Seq, which enable the cap-
ture of transcriptome information from both hosts and 
bacteria. These techniques facilitate the identification of 
changes in the transcriptional pathways associated with 
cancer metastasis, DNA repair, and other processes [14, 
45]. SAHMI is another recently developed single-cell 
analysis technique for studying host-microbiome interac-
tions. It systematically recovers and filters contaminants 
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from the host genome sequencing data, thereby obtain-
ing the most accurate microbial signal. The developer 
further applied the technique to reveal the characteristics 
of tumor-microbiome interactions in pancreatic cancer 
at the single-cell level and to predict patient outcomes 
[46]. To gain a deeper understanding of the spatial heter-
ogeneity within the tumor microbiome, spatially resolved 
co-detection of bacterial and host molecular markers and 
transcripts is required. Recently, newly developed spatial 
transcriptomic methods have enabled the acquisition of 
gene expression characteristics and spatial distribution 
data for both host and microbial species in  situ. These 
methods have been successfully applied to oral squamous 
cell carcinoma, CRC, and lung cancer to assess host-
microbiome interactions at spatial resolution [14, 47].

Potential culture methods
Culture-based assays have the capacity to elucidate signif-
icant functional distinctions among individual microbial 
communities and help dissect differences in strain-level 
functional variation between individuals that drive health 
and disease outcomes. To gain a deeper understanding 
of the functions and mechanisms of intratumoral bac-
teria, it is crucial to obtain pure bacterial cultures. Cul-
turomics, a high-throughput bacterial culture technique 
that employs various culture conditions, coupled with 
MALDI-TOF mass spectrometry or 16S rDNA sequenc-
ing for bacterial species identification [48], plays a pivotal 
role in elucidating the functions of specific host bacte-
ria. Culturomics enables the discovery of potential new 
strains to a greater extent and enriches the existing cul-
turable microbial resource bank [49]. Culturomics relies 
on changes in the culture conditions and media. In recent 
years, continuous workflow optimization has led to sig-
nificant simplification of culture conditions while main-
taining a high capture rate (98%) of the isolated strains 
[50]. Currently, researchers have employed culturomics 
to culture Gemella sanguinis and Streptococcus inter-
medius from the tumor tissues of non-small-cell lung 
cancer patients, while isolating Prevotella from healthy 
oral cavities to establish a sample bank of lung and oral 
microbiomes for lung cancer patients [51]. Although 
culturomics has been preliminarily applied to the isola-
tion and culture of intratumoral bacteria, supporting evi-
dence remains limited, and its reliability requires further 
investigation.

Given the harsh requirements of microbial culture 
environments for meeting research needs, numer-
ous novel culture technologies have emerged in recent 
years to accommodate the growth of microorganisms 
in complex environments. Bioreactors can simulate the 
physiological conditions of the gastrointestinal tract 
in  vitro, facilitating the proliferation and establishment 

of complex microbial communities. This provides a solu-
tion for cultivating microbes in  vitro [52]. MicDrop, a 
culture platform that combines droplet microfluidics and 
high-throughput DNA sequencing, allows the isolation 
and cultivation of individual bacteria from the human 
microbiota. It also enables assessment of the growth and 
function of microbiota components, offering a promising 
method for culturing tumor microbiomes with low bio-
mass [53]. In addition to the gut microbiome, the vaginal 
microbiome can be cultured by simulating the physiolog-
ical environment. Mahajan et  al. constructed an organ 
chip microfluidic culture model by recreating a vaginal 
epithelial environment. This model can be employed to 
evaluate optimal colonizing bacteria and host immune 
responses in the vagina [54]. This in  vitro simulation 
method provides a reference for the cultivation of intra-
tumoral bacteria by simulating the tumor microenviron-
ment to create a suitable environment for the growth 
and reproduction of intratumoral bacteria, which may 
be inspired by organoid technology. Reverse genom-
ics, another new technique that can be used to culture 
the tumor microbiome, utilizes a single-cell genome or 
metagenomic sequences to design antibodies targeting 
predicted cell surface proteins, enabling the cultivation of 
specific bacteria. Cross et  al. successfully employed this 
technique to isolate and cultivate three distinct species 
of Saccharibacteria from the oral cavity as well as previ-
ously uncultured SR1 bacteria [55]. This technology can 
be applied to the culture of any species in any environ-
ment and can unlock new species, potentially provid-
ing a new technical solution for culturing intratumoral 
bacteria. Owing to the low biomass of the intratumoral 
microbiome, there is currently no reliable method to iso-
late low-biomass intratumoral bacteria and culture as-
yet-uncultured microbes, which severely limits relevant 
research. More research is needed to explain the com-
plex interactions between intratumoral bacteria and the 
tumor microenvironment, thereby providing essential 
theoretical groundwork for the development of culture 
techniques tailored specifically to the tumor microbiome.

Intratumoral microbiome influence tumorigenesis 
and progression through immunomodulation
Pro‑tumor intratumoral microbiota: the malignant 
collaborators
Immune evasion is a hallmark of cancer [56]. In this 
context, the interplay between host microbes and the 
immune system represents a symbiotic physiological pro-
cess. The anaerobic, nutrient-rich, and immunosuppres-
sive milieu within tumors provides a setting that fosters 
symbiotic relationships among microbiomes, immune 
cells, and tumor cells. Intratumoral microbiomes can 
orchestrate the programming of the immune system into 
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an inhibitory state, thereby bolstering growth and facili-
tating tumor development [57].

F. nucleatum
When colonizing a tumor, bacteria with high site-spe-
cific colonization abilities can affect the responses of 
immune effector cells to malignant cells [58–60]. The first 
is the impact of intratumoral bacteria on tumor develop-
ment, of which the most typical strain is F. nucleatum, 
which directly and/or indirectly suppresses the immune 
response to promote tumor growth. In CRC, intratumoral 
F. nucleatum promotes tumor development by inhibit-
ing natural killer (NK) cell cytotoxicity and T cell activity 
[61–65], promoting the recruitment of tumor-associated 
macrophages (TAMs) [66–69], and inducing cytokine 
secretion by normal epithelial cells and tumor cells [70]. 
Fusobacterium nucleatum also can promotes colorectal 
cancer cell proliferation and tumor growth by activating 
TLR4 signaling to NF-κB and upregulating the expres-
sion of microRNA-21 [71]. In addition, Mandelboim, O. 
et  al. found that F. nucleatum could bind and activate 
inhibitory receptors such as T cell immune receptor 
with immunoglobulin and ITIIM domain (TIGIT) and 
Carcinoembryonic antigen-related cell adhesion mol-
ecule 1 (CEACAM1) to inhibit natural killer (NK) cell 
cytotoxicity and T cell activity, thus enhancing colorec-
tal cancer progression [64, 65]. Furthermore, FadA, a 
virulence protein of F. nucleatum, binds to E-cadherin 
to trigger a decrease in β-catenin phosphorylation and 
subsequent activation of β-catenin-regulated transcrip-
tion, leading to increased oncogenic MYC expression, 
which upregulates the expression of immunosuppres-
sive programmed cell death ligand 1 (PD-L1) and CD47 
in cancer cells [72]. The derivatives of F. nucleatum also 
promote the progression of CRC through immunoregu-
lation. Its outer membrane vesicles (OMVs) or LPS can 
induce pro-inflammatory responses in dendritic cells and 
tumor-associated responses in macrophages to promote 
CRC progression [73].

Beyond its established deleterious role in CRC, recent 
studies have expanded the scope of F. nucleatum to 
various other malignancies, providing new evidence for 
its pro-tumorigenic effects through immune modula-
tion. In breast cancer, F. nucleatum leverages its lec-
tin Fap2 to selectively colonize the TME, promoting 
tumor growth by inhibiting the accumulation of tumor-
infiltrating T cells [74]. Similarly, in esophageal squa-
mous cell carcinoma (ESCC), F. nucleatum infection 
and colonization attract an enrichment of Treg cells, 
which weakens antitumor immune responses and facili-
tates both its persistent colonization and the malignant 
progression of the tumor [75]. Moreover, in oral squa-
mous cell carcinoma (OSCC), F. nucleatum residing in 

the tumor microenvironment (TME) triggers the Gal-
NAc-autophagy-TBC1D5 signaling pathway, resulting 
in GLUT1 accumulation on the plasma membrane and 
extracellular lactate deposition. This cascade promotes 
tumor-associated macrophage (TAM) formation, fur-
ther driving tumor progression [76]. As the oncogenic 
role of F. nucleatum within the intratumoral microbi-
ome continues to emerge, it is increasingly recognized 
as a critical contributor to cancer progression. Targeting 
F. nucleatum may hold potential as a therapeutic strat-
egy to enhance cancer treatment. However, before such 
interventions can be considered, a deeper understanding 
of the fundamental biology of F. nucleatum and its inter-
actions with host cells and co-residing symbiotic micro-
biota is essential.

Bacteroides fragilis (B. fragilis)
Bacteroides fragilis has been identified as a biomarker 
for poor prognosis in CRC, primarily exerting its effects 
through the secretion of toxin, particularly Enterotoxi-
genic B. fragilis (ETBF) strains. Reports indicate that CRC 
mouse models with intratumoral colonization of ETBF 
exhibit elevated levels of IL-17 and increased DNA dam-
age within colonic epithelium, which accelerates tumor 
growth [77]. Furthermore, ETBF can induce Th17 cell 
differentiation via METTL14-dependent m6A meth-
ylation, downregulating tumor-derived exosomal miR-
149-3p, thereby promoting CRC cell proliferation [78]. 
Additionally, Bacteroides fragilis tends to accumulate 
in CIMP (CpG island methylator phenotype)-positive 
tumor tissues and is significantly associated with CIMP 
characteristics such as MLH1 (mutL homolog 1) meth-
ylation [79]. Patients with high CIMP tumors often dis-
play features of immune suppression, including reduced 
immune infiltration, lower cytotoxicity, and diminished 
immune activation [80]. This immunosuppressive phe-
notype may potentially be mediated by intratumoral B. 
fragilis, although further research is required to elucidate 
this mechanism.

Helicobacter pylori (H. pylori)
It is a well-established fact that H. pylori colonization in 
the stomach can induce chronic inflammation of the gas-
tric mucosa and DNA damage, thereby leading to gastric 
cancer. This oncogenic potential is typically mediated by 
a variety of virulence factors, such as VacA (Vacuolat-
ing cytotoxin A), CagA (Cytotoxic- associated gene A), 
and OipA (Outer inflammatory protein A) [81]. VacA 
enhances the colonization capability of H. pylori in can-
cer cells and inhibits T-cell proliferation, disrupts B-cell 
antigen presentation, and alters macrophage signaling, 
thereby impairing the immune system’s ability to eradi-
cate H. pylori [82]. Intracellularly colonized H. pylori 
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can utilize the virulence factor CagA to recruit PKC δ, 
promoting the phosphorylation of STAT3S727 within the 
nucleus, which upregulates IL-6 expression and acceler-
ates the onset of gastric cancer [83]. CagA also activates 
NF-κB and induces the release of downstream IL-8 in a 
time-dependent manner, causing sustained inflamma-
tion and tumorigenesis [84]. OipA synergizes with CagA, 
similarly inducing pro-inflammatory signaling and IL-8 
secretion in gastric epithelial cells. Additionally, this pro-
tein can trigger neutrophil infiltration and dendritic cell 
inhibition, thereby contributing to the pathogenesis of 
gastric cancer [85].

Porphyromonas gingivalis (P. gingivalis)
Porphyromonas gingivalis is an inflammophilic micro-
organism that that absorbs these nutrients to sustain 
its growth while inducing a dysregulated inflammatory 
microenvironment, which is considered a tumorigenic 
factor. Prospective cohort studies have long suggested a 
correlation between the presence of the oral pathogen P. 
gingivalis and an increased cancer risk [86]. However, the 
precise mechanisms by which P. gingivalis contributes 
to carcinogenesis remain unclear. Recent research has 
revealed that the oral microbiota P. gingivalis can trans-
locate to the pancreas and upregulate the expression of 
CXCR4 (C-X-C chemokine receptor type 4) in pancreatic 
cancer cells, a chemokine receptor capable of binding to 
the fimbriae of P. gingivalis [87]. Under environmental 
stress and chemotherapy, the upregulated CXCR4 further 
facilitates the colonization of P. gingivalis within cancer 
cells, thereby enhancing their survival. This phenomenon 
implies a mutualistic symbiotic relationship between P. 
gingivalis and pancreatic cancer cells [88]. Moreover, 
the highly enriched P. gingivalis in tumor tissues can 
activate the NLRP3 inflammasome and induce neutro-
phils to release elastase, thereby fostering inflammatory 
responses and shaping the suppression of the tumor 
immune microenvironment [89, 90].

Intratumoral P. gingivalis can also modulate mac-
rophage activity. When macrophages are stimulated by 
P. gingivalis or its lipopolysaccharides, their secretion of 
IL-1α, CCL3, and CCL5 significantly increases, with dif-
ferent strains of P. gingivalis inducing varying levels of 
cytokine production [91, 92]. Additionally, P. gingivalis 
inhibits the phagocytic activity of macrophages towards 
cancer cells and promotes the polarization of M1-type 
macrophages to the M2 type. This ability of P. gingivalis 
to modulate macrophage function is partly dependent on 
the sphingolipid content in the bacterial membrane [93].

Other intratumoral commensal bacterial
Beyond the above commonly implicated intratumoral 
bacteria driving tumor progression, emerging evidence 

has identified additional harmful microbial species. In 
colorectal cancer, Eubacterium rectale endotoxin exacer-
bates colitis and induces tumorigenesis by activating the 
transcription factor NF-κB in normal colonic epithelial 
cells [94]. Similarly, Actinomyces co-localizes with colo-
rectal cancer-associated fibroblasts and reduces CD8+ T 
lymphocyte infiltration within the tumor microenviron-
ment by activating the TLR2/NF-κB pathway, thereby 
promoting tumor progression [95]. In gastric cancer, 
Methylobacterium contributes to tumor development 
by downregulating TGFβ expression and decreasing the 
frequency of CD8+ tissue-resident memory T cells in the 
tumor [96]. In addition, the interplay between intratu-
moral commensal bacterial communities may result in a 
synergistic pro-tumor effect. In lung cancer, commensal 
bacteria trigger Myd88-dependent production of IL-1β 
and IL-23 from myeloid cells. This, in turn, induces the 
proliferation and activation of Vγ6+Vδ1+ γδT cells that 
produce IL-17 and other effector molecules, thus foster-
ing tumor growth [97]. Distinct and abundant intratu-
moral commensal bacteria drive suppressive monocyte 
differentiation in pancreatic cancer through selective 
Toll-like receptor ligation, consequently inducing T-cell 
anergy and creating an immunosuppressive microenvi-
ronment [98].

The intricate interplay between the intratumoral micro-
biome and cancer progression represents a compelling 
avenue for investigation in contemporary research. These 
intratumoral microbiota, which play a crucial role in pro-
moting an immunosuppressive microenvironment, are 
often traceable to the oral cavity or gastrointestinal tract, 
thereby providing a clue to the origins of intratumoral 
microbiome. The close interaction between intratumoral 
microbiome and immune cells has catalyzed the explo-
ration of its role within the tumor microenvironment. 
Beyond tumor-specific bacteria, a myriad of bacterial 
species inhabits tumors independently or as commensal 
residents, orchestrating immune responses that contrib-
ute to pro-tumorigenic effects. It is imperative to note, 
however, that the role of intratumoral bacteria is a topic 
rife with controversy. Not all intratumoral bacteria fit the 
archetype of tumor-promoting “malignant collaborators”; 
some emerge as “protective allies” actively supporting 
anti-tumor immunity, a subject that will be expounded 
upon in the ensuing section.

Anti‑tumor intratumoral microbiota: the protective allies
Although the majority of studies emphasize the nega-
tive regulatory role played by the intratumoral micro-
biome on the host, akin to the dual nature inherent in 
all things, there are also a part of intratumoral bacte-
ria that can exert an anti-tumor effect through positive 
immunomodulation.
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Akkermansia muciniphila (A. muciniphila)
Akkermansia muciniphila is a gut probiotic endowed 
with a myriad of potent functions, including weight 
loss, anti-aging, inhibition of neurodegenerative dis-
eases, and prediction of immunotherapy efficacy [99]. 
Recent research has revealed that this probiotic also 
resides within the tumor microenvironment, where it 
can remodel the immune milieu to inhibit inflammation-
associated tumorigenesis. In CRC, A. muciniphila sup-
presses tumor growth by inducing the activation of the 
TLR2/NF-κB/NLRP3 pathway and promoting the accu-
mulation of M1 macrophages [100]. Furthermore, the 
membrane protein Amuc_1100 of A. muciniphila has 
been demonstrated to enhance gut barrier function and 
reduce inflammation through TLR2 signaling, while also 
inducing the production of tumor cytotoxic cytokines 
such as IFN-γ and granzyme B to inhibit tumorigenesis 
[101]. Another specific membrane protein of A. mucin-
iphila, acetyltransferase, has been shown to reprogram 
the tumor microenvironment through immunomodu-
lation, thereby reducing the incidence of CRC. Specifi-
cally, during tumorigenesis, the acetyltransferase of A. 
muciniphila enters cancer cells via macropinocytosis 
and induces the transcription and secretion of HSP70 
through H3K14ac, accelerating tumor-specific T cell 
responses and promoting protective immunity [102]. The 
beneficial effects of A. muciniphila in the gut have been 
well substantiated, and it also appears to play a cancer-
inhibiting role in the tumor microenvironment, albeit 
requiring further investigation to confirm these findings.

Lactobacillus
Intratumoral Lactobacillus can also bolster anti-cancer 
efficacy through immune modulation. In breast cancer, 
the probiotic Lactobacillus plantarum promotes butyrate 
production, which enhances butyryl-coenzyme A trans-
ferase activity, suppresses inflammation, and fosters the 
formation of a healthy microbiota, thereby inhibiting 
tumor growth [103]. Lactobacillus reuteri (L. reuteri), 
persisting in melanoma, enhances the efficacy of antitu-
mor immunity by secreting the dietary tryptophan cat-
abolite I3A (Indole-3-acetic acid), which stimulates CD8+ 
T cells to produce IFN-γ. Additionally, the antitumor 
immune response of L. reuteri can be further amplified 
by a tryptophan-rich diet [104]. Moreover, Lactobacil-
lus johnsonii (L. johnsonii) can facilitate the produc-
tion of indole-3-propionic acid (IPA), which modulates 
the stemness program of CD8+ T cells and promotes 
the proliferation of exhausted CD8+ T cells, ultimately 
enhancing pan-cancer responsiveness to immune check-
point inhibitor (ICI) therapy [105]. The identification 
of intratumoral Lactobacillus and elucidation of their 

mechanisms provide a more rational basis for designing 
novel dietary and probiotic combination therapies for 
cancer patients.

Clostridium
Clostridium may also serve as a good prognostic marker 
in the tumor. High levels of intratumoral Clostridium are 
significantly associated with reduced CCL2 expression 
and downregulated PI3K activity, which might lead to a 
decrease in the recruitment of myeloid-derived suppres-
sor cells (MDSCs) to the tumor microenvironment. This, 
in turn, could result in an increased infiltration of CD8+ 
T cells in bile tract cancers [106]. Furthermore, Clostrid-
ium butyricum (C. butyricum), a commensal bacterium 
within the digestive system, exerts its probiotic effects 
primarily through the production of short-chain fatty 
acids (SCFAs) [107]. In oncological contexts, C. butyri-
cum inhibits cancer cell proliferation predominantly by 
interacting with the Wnt/β-catenin signaling pathway to 
reduce bile acids and increase SCFAs production [108]. 
Another species, Clostridium sporogenes, augments the 
efficacy of CD8+ T cell-mediated immunotherapy by 
assisting other probiotics in elevating levels of IPA in the 
bloodstream [105].

Other intratumoral commensal bacterial
In addition to the previously discussed tumor-specific 
probiotics, numerous other commensal bacteria exhibit 
anti-cancer properties through immune mechanisms, 
either as isolated species or as part of a consortium. To 
elucidate the intricate interactions among metabolites, 
immune cells, and microbial composition within the 
tumor microenvironment and their relationship to the 
progression of CRC, Xusheng Zhang et  al. performed a 
comprehensive analysis of the commensal microbiota 
in normal colonic tissue, adjacent non-tumorous tissue, 
and tumor tissue from CRC patients. Their investiga-
tion revealed that bacteria of the Lachnospiraceae family, 
specifically Ruminococcus gnavus and Blautia producta, 
colonizing tumors can rapidly degrade lysophosphatidyl-
choline, thereby maintaining the tumor immune surveil-
lance function of CD8+ T cells and playing a pivotal role 
in preventing colorectal cancer development [109]. Fur-
thermore, recent research by Ghaddar B et al. has dem-
onstrated that intratumoral bacterial communities can 
induce immune cell infiltration and potentiate anti-tumor 
responses by enhancing programmed cell death protein 1 
(PD-1) signaling and responses to intracellular infection. 
This process also involves the downregulation of FOXO-
mediated transcription and interferon-gamma signaling, 
which inhibits regulatory T cell activation [46]. Addition-
ally, the peptidoglycan of gram-negative bacteria engages 
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the nucleotide-binding oligomerization domain-contain-
ing protein 1 (NOD1) to activate the CCR6-CCL20 axis, 
consequently upregulating isolated lymphoid follicles 
(ILFs) [110]. Further research is imperative to substanti-
ate the anti-tumor effects of these bacteria, thereby sup-
porting their potential use as therapeutic probiotics.

This body of evidence highlights the complex and 
multifaceted interactions between intratumoral bacte-
ria and host immune responses, revealing differences in 
the influence of intratumoral bacteria on tumors. These 
discrepancies are attributable not only to the inherent 
characteristics of the bacteria but also to differences in 
technological platforms and sample processing of the 
intratumoral microbiome, which is also one of the prob-
lems faced by current research on tumor microbiomes. 
There is a need to develop new techniques that are more 
suitable for the detection of trace tumor microbiomes 

and to develop standard procedures for processing tumor 
microbiome specimens. Understanding the crosstalk 
among microbes, the immune system, and cancer cells in 
the tumor microenvironment may provide new therapeu-
tic intervention strategies for cancer treatment. Targeting 
the intratumoral microbiota and its immunomodulatory 
effects may improve patient outcomes and alter the tra-
jectory of this devastating disease (Fig. 2).

Intratumoral microbiome influence therapeutic 
response through immunomodulation
Impact of the intratumoral microbiome on immunotherapy 
response
Cancer cells are cunning and evade immune surveil-
lance by overexpressing immune checkpoints and 
recruiting immunosuppressive cells, thus creating 
a more favorable environment for their growth and 

Fig. 2  Intratumoral microbiome exert pro-tumor and anti-tumor effects through immune regulation
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development [111]. ICI therapy, which activates anti-
tumor immune responses by inhibiting the interactions 
between T-cell inhibitory receptors and their cognate 
ligands, is one of the most frequently employed clinical 
immunotherapeutic approaches. However, ICI therapy 
is associated with significant individual variability and 
low response rates, with less than 20% of the patients 
benefiting from it [112]. Hence, identifying the factors 
influencing the efficacy of immunotherapy is essential 
to enhance its effectiveness and broaden the scope of 
its beneficiaries, thereby providing a new avenue for 
improving immunotherapeutic outcomes.

In recent years, with the growing interest in tumor 
microbiome research, the impact of intratumoral bac-
teria on immunotherapy has gradually been unveiled. 
Recent studies have found that bacteria in the tumor 
microenvironment can influence the response to 
ICI therapy by mediating T cell immune responses. 
Kalaora et  al. discovered HLA peptides from bacteria 
in melanoma that can be co-presented by antigen-
presenting cells and tumor cells, thereby increasing 
the possibility of presenting more immunogenic anti-
gens, promoting T cell activation, and consequently 
enhancing the benefits of ICI therapy [17]. The facili-
tative role of the intratumoral microbiota in mela-
noma immunotherapy was further demonstrated in 
preclinical models treated with probiotics. Specifi-
cally, the study found that L. reuteri within melanoma 
mouse model promotes an immune-stimulatory tumor 
microenvironment through the release of dietary 
tryptophan catabolite I3A, which promotes the infil-
tration of IFNγ-producing CD8+ T cells mediated 
by AhR signaling, thereby enhancing the response to 
PD-L1 therapy in patients [104]. Additionally, during 
ICI treatment, F. nucleatum was found to increase the 
accumulation of IFN-γ+CD8+ T cells in CRC patients, 
thereby enhancing the cancer’s sensitivity to anti-PD-
L1 therapies [113]. The tumor microbiome can also 
directly affect the effectiveness of ICI treatment by 
regulating immune checkpoints. In oral squamous cell 
carcinoma and CRC, intratumoral bacteria stimulate 
MAPK, NF-κB, and other signaling pathways through 
microbial-associated molecular patterns, promoting 
the formation of an immunosuppressive microenvi-
ronment by enhancing the production of MDSCs and 
neutrophils. In this immunosuppressive microenviron-
ment, the immune checkpoints CTLA4 and PD-1 are 
upregulated, and regions with a high bacterial load in 
the tumor form a barrier that hinders the infiltration 
of T cells into the tumor [14]. Furthermore, intratu-
moral gammaproteobacteria seem to downregulate 
the expression of PD-L1 and lead to poor responses to 

ICI therapy in patients with non-small-cell lung cancer 
[114].

Impact of the intratumoral microbiome on chemotherapy 
response
Although conventional chemotherapy is not traditionally 
classified as an immunotherapy, it is essential to acknowl-
edge that its efficacy relies on intact immune responses. 
This observation underscores the hypothesis that the 
composition of the intratumoral microbiota plays a piv-
otal role in modulating an individual’s response to these 
therapeutic modalities. This has been demonstrated in 
several studies on cancer chemotherapy. In CRC patients 
receiving standard 5-FU-based adjuvant chemotherapy 
after curative surgery, F. nucleatum infection triggered 
significant upregulation of the BIRC3 gene, which was 
mediated through the TLR4/NF-κB pathway. Conse-
quently, this infection reduces the sensitivity of CRC 
cells to 5-FU chemotherapy, culminating in the develop-
ment of drug resistance [115]. Inflammasome-mediated 
inflammation plays a pivotal role in innate immunity 
[116]. As a member of the inflammatory complex fam-
ily, NLRP3 acts as a scout for monitoring and recognizing 
various danger signals, such as pathogenic bacteria and 
their metabolites. This subsequently induces an inflam-
matory response that promotes tumor growth and 
chemoresistance [117, 118]. In esophageal squamous car-
cinoma, F. nucleatum enriches MDSCs by inducing high 
expression of NLRP3, which results in cisplatin resistance 
[119]. The inflammatory response usually causes immu-
nosuppression, which weakens the therapeutic response 
[120]. Neoadjuvant chemoimmunotherapy (NACI) has 
become the first-line treatment option for gastroesopha-
geal cancer, with the role of the intratumoral microbiome 
being explored in this context. In patients with esopha-
geal squamous cell carcinoma who received NACI, the 
abundance of Streptococcus in tumor tissue was signifi-
cantly higher in responders than in non-responders and 
was predictive of prolonged disease-free survival (DFS). 
Further analysis of immune cell infiltration revealed 
an increasing trend of GrzB+ and CD8+ T-cell infiltra-
tion in patients with high intratumoral streptococcal 
abundance [15], suggesting that intratumoral bacteria 
play an important role in chemotherapy combined with 
immunotherapy.

Overall, the available evidence shows that the intra-
tumoral bacteria related to immunotherapy responses 
belong to different taxa. Contradictory roles also exist 
for the same bacterial genus within the same cancer 
(increasing ICI benefits/promoting resistance) [113, 
115]. The reasons behind these contentious findings pri-
marily relate to the technical platforms and sample han-
dling processes. One major challenge in intratumoral 



Page 15 of 26Wang et al. Journal of Biomedical Science           (2025) 32:23 	

microbiota research is sample contamination, which 
can lead to misinterpretation of microbial composi-
tion and function [10]. Additionally, since bacterial 
metabolites play a key role in influencing the host, their 
production is highly dynamic, varying with time and 
environmental conditions. Consequently, factors such 
as sampling methods, handling procedures, and storage 
conditions—including time, temperature, and preserva-
tion techniques—can significantly impact the accuracy 
and reproducibility of metabolite detection [31]. How-
ever, the impact of the tumor microbiome on treatment 
response is indisputable. These data provide compelling 
evidence that intratumoral microbiota can modulate 
tumor immunity and respond to immunotherapy.

Intratumoral microbiome influence tumor 
prognosis through immunomodulation
Intratumoral microbiomes may affect proximal and dis-
tant immunity and alter the clinical outcomes of patients 
with tumors [121, 122]. There is a significant correlation 
between intratumoral bacterial load and cellularity of 
CD8+ T cells, NK cells, PU.1+ macrophages and CD66B+ 
neutrophils, the higher the bacterial load; the fewer the 
immune stimulation cells, which significantly reduces 
the survival rate of cancer patients [94, 96, 123, 124]. In 
contrast, pancreatic cancer long-term survivors exhibit 
a more diverse and abundant intratumoral microbiome, 
along with higher frequencies of CD4+ and CD8+ T cells, 
compared to short-term survivors [125]. In addition, high 
expression of CD206 (a marker for M2 macrophages) in 
the tumor stroma is associated with an increased burden 
of gram-positive bacteria in the tumor and predicts poor 
prognosis for esophageal squamous cell carcinoma [126].

Tumor metastasis and recurrence are major chal-
lenges for tumor treatment. Compared with early-diag-
nosed tumors, metastasis and relapse make treatment 
more difficult. Emerging evidence highlights the con-
tribution of intratumoral microbiota to tumor metas-
tasis. In a pan-cancer metastasis cohort, the DNA of 
F. nucleatum can be widely detected in tumors, and 
its high abundance in non-small cell lung cancer is 
indicative of poorer outcomes [127]. The abundance 
of F. nucleatum is also strongly associated with an 
increased density of myeloid-derived suppressor cells 
(MDSCs), and can promote macrophage infiltration 
by activating CCL20 and inducing M2 polarization of 
macrophages to enhance CRC metastasis [128, 129]. 
Additionally, F. nucleatum selectively acquires miR-
155-5p and miR-205-5p by activating Myd88-depend-
ent TLR4-mediated signaling pathways to inhibit 
ADH1B and TGFBR2 expression, thereby promoting 
the migration of laryngeal cancer cells to the lungs and 
shortening the disease-free survival of patients [130]. 

Furthermore, the surface adhesin Fap2 of F. nucleatum 
can induce the secretion of pro-inflammatory cytokines 
IL-8 and C-X-C motif chemokine ligand 1 (CXCL1) 
and NOD-like receptor family pyrin domain contain-
ing 3 (NLRP3) activation to promote tumor migration 
and invasion [131]. Additionally, exosomes can serve as 
mediators through which intratumoral bacteria facili-
tate metastasis. Studies have revealed that tumor cells 
infected with bacteria may augment exosome secre-
tion to establish an immunosuppressive microenviron-
ment [78, 132, 133]. Notably, F. nucleatum infection 
in tumor cells stimulates the secretion of exosomes 
enriched with miR-1246, miR-92b-3p, miR-27a-3p, and 
CXCL16, RhoA, and IL-8 [134]. These exosomes serve 
as mediators of intercellular communication, transfer-
ring their molecular cargo to uninfected cells, includ-
ing but not limited to tumor cells [134, 135], immune 
cells [136–138], epithelial cells [139], fibroblasts [140, 
141] and endothelial cells [142]. This cascade ultimately 
facilitates the establishment of a pre-metastatic niche 
characterized by immunosuppression, inflammation, 
angiogenesis, vascular permeability, lymphangiogen-
esis, organotropism, and cellular reprogramming, all of 
which contribute to tumor cell colonization and metas-
tasis [143].

The intratumoral microbiome can also influence 
tumor recurrence through immune modulation. In 
CRC, intratumoral bacteria sustain the activation of 
the NFκB-TNF-α-IL-6 pathway to promote the activa-
tion of metalloproteins and colony-stimulating factor 
1–3 (CSF1-3) to result in an increased risk of relapse 
[144, 145], and also increase the mortality by reducing 
tumor-infiltrating lymphocytes infiltration [146]. Simi-
larly, the commensal microbiota in breast cancer tissue 
can also interact with host immunity to influence the 
risk of local recurrence [147]. Remarkably, F. nucleatum, 
previously regarded as a tumor-promoting intratumoral 
bacterium, has been found to reduce the recurrence rate 
of oral squamous cell carcinoma and extend patient sur-
vival, which seems to be associated with fewer M2 mac-
rophages, CD4 lymphocytes, fibroblasts, and TLR4, and 
increased TNFSF9 and IL-1β [148]. These findings pro-
vide new clues for using the intratumoral microbiome as 
a biomarker to predict survival.

Modulating intratumoral microbiome 
for enhancing cancer therapy
While current research on manipulating the tumor 
microbiome to improve treatment is still in the explora-
tory stages, existing evidence suggests that the tumor 
microbiome can exert beneficial or detrimental effects 
on host physiology by modulating tumor immunity. In 
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this context, enhancing anticancer immunity through 
the modulation of the intratumoral microbiota is a viable 
treatment option for patients with cancer (Fig. 3).

Antibiotics targeting harmful intratumoral bacteria
Antibiotics are powerful tools that are used against bac-
teria. A study published in Science in 2017 highlighted 
a significant reduction in the intratumoral F. nuclea-
tum burden and cancer cell proliferation, along with 
decreased metastatic risk in F. nucleatum-positive CRC 
mouse models upon treatment with metronidazole [149]. 
In another study, ciprofloxacin and gemcitabine were 
delivered into colorectal tumors when loaded into HA. 
Leveraging the acidic pH and hyaluronidase response, 
both agents were released into the tumor microenviron-
ment, leading to the dual action of killing intratumoral 
bacteria and cancer cells. Notably, the destruction of 
bacteria by this method facilitates dendritic cell matura-
tion, whereas the released gemcitabine inhibits MDSCs, 
thereby fostering T cell-mediated anti-tumor immunity 
to augment immunotherapy [150]. These results imply 
that antibiotic-based interventions targeting intratu-
moral microbiota could serve as potential avenues to 
bolster cancer treatment. Nevertheless, the broad-spec-
trum antibacterial nature of metronidazole and cipro-
floxacin can also target beneficial constituents of the 
tumor microbiome, potentially compromising microbial 
diversity and impeding cancer immunotherapy [151]. To 

address this challenge, Wang et  al. assessed the anaero-
bic activation properties of nitroimidazoles and devised 
an antibiotic silver-tinidazole complex enclosed within 
liposomes. This compound specifically targeted the 
tumor-promoting anaerobic bacterium F. nucleatum, 
eliciting the discharge of cancer-specific microbial neo-
antigens and fostering augmented infiltration of CD8+ T 
cells. Employing this approach to eliminate tumor-pro-
moting bacteria has the potential to convert an immune-
cold tumor into an immune-hot one, thereby activating 
the immune system to recognize tumor cells [152].

Adjunctive use of antibiotics in cancer treatment can 
effectively reduce intratumoral pathogenic bacteria, 
thereby alleviating tumor progression, enhancing immu-
notherapy efficacy, and overcoming tumor resistance 
induced by harmful microbes. Compared to other micro-
biome modulation strategies, antibiotic intervention 
is relatively simple and can be monitored in real-time 
through conventional detection methods [153]. However, 
the use of antibiotics also has limitations, such as their 
non-selective impact on the host microbiome, which may 
trigger adverse reactions, disrupt the normal microbiota, 
and promote the emergence of resistant strains [154]. 
Additionally, their application in cancer is limited to the 
depletion and prevention of known carcinogenic micro-
organisms [155]. Therefore, careful selection and prudent 
use of antibiotics are essential in clinical practice to avoid 
overuse.

Fig. 3  Modulating intratumoral microbiome for enhancing cancer therapy
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Reshaping the intratumoral microbiota landscape 
through fecal microbiota transplantation (FMT)
It is well established that FMT directly modulates the 
gut microbiota, thereby influencing cancer treatment. 
Recent studies have suggested that the post-FMT gut 
microbiota can migrate via the bloodstream and lym-
phatic pathways, colonize the tumor microenviron-
ment, and exert immunomodulatory effects [104, 125]. 
In the case of pancreatic cancer, individuals with long-
term survival demonstrate greater diversity and abun-
dance of their intratumoral microbiomes, along with 
higher frequencies of CD4+ and CD8+ T cells, than 
short-term survivors. Notably, the transplantation of 
fecal microbiota from long-term survivors to antibiotic-
treated mice resulted in the detection of human donor 
bacteria within the tumor tissues of recipient mice, 
effectively controlling tumor progression by fostering 
increased immune cell infiltration [125]. This finding 
was corroborated by a recent study wherein antibiotic-
treated mouse models showed significantly smaller 
tumors in mice that received FMT from responders 
than in those from non-responders under ICI therapy. 
Tracing the origin of intratumoral bacteria revealed the 
presence of human donor-derived bacteria in the tumor 
tissues of FMT-treated mice. Further investigation of 
their impact on host immunity indicated their capacity 
to induce anti-tumor effects by enhancing CD8+ T cell 
infiltration and reducing the number of Treg cells [104].

Currently, FMT is most established in the treatment 
of Clostridium difficile infections, with success rates 
reaching up to 95%, and it has been incorporated into 
clinical guidelines [156, 157]. In the field of oncology, 
both preclinical and clinical studies suggest that FMT 
may enhance the efficacy of ICIs by modulating the 
microbiome [158]. The alteration of the microbiome 
profile in FMT recipients may enhance the therapeu-
tic activity of FMT through competitive growth [159, 
160]. In addition, FMT is considered a milder approach 
compared to other treatments and may reduce the 
toxicity of chemotherapy and immunotherapy drugs, 
thereby alleviating radiation-induced intestinal dam-
age and decreasing immune-related adverse events 
(irAEs) [161]. However, FMT may encounter limita-
tions in certain scenarios, including when resistance is 
independent of the microbiome, when donor-recipient 
microbiota compatibility is lacking, or when pathogens 
are inadvertently transplanted into immunocompro-
mised cancer patients [162]. Such factors can result 
in treatment failure, the exacerbation of irAEs, or the 
emergence of secondary infections, which further com-
plicate the clinical management of cancer. To miti-
gate these risks, personalized microbiome profiling is 
essential to ensure compatibility between the donor 

and recipient, alongside rigorous pathogen screening 
to safeguard against potential infections. While FMT 
holds considerable promise in reshaping the tumor 
microbiome and modulating tumor immunity, care-
ful selection of an optimal donor is critical to avoiding 
these pitfalls and maximizing its therapeutic efficacy.

Dietary regulation
Prompted by the regulatory impact of diet on gut micro-
biota, multiple research teams have initiated inves-
tigations into the mediation of the regulatory role of 
intratumoral microbiota in cancer through diet. In a dou-
ble-blind placebo-controlled clinical trial, the continuous 
administration of fish oil in the month preceding tumor 
resection among patients with breast cancer was found to 
significantly modify the composition of the tumor tissue 
microbiota [163]. However, this study did not investigate 
the implications of these intratumoral microbial changes 
on tumor development and cancer treatment. In a recent 
study, researchers attempted to enhance immunother-
apy by modulating the intratumoral probiotic L. reuteri 
through dietary regimens. They subjected mice to either 
a high- or low-tryptophan diet before implanting tumor 
cells into the L. reuteri-treated mouse model and main-
tained this dietary protocol during ICI therapy. These 
findings highlight that a diet rich in tryptophan substan-
tially bolsters the L. reuteri-mediated anti-tumor effect. 
Further investigation revealed that the beneficial impact 
on the tumor promoted by the high tryptophan diet was 
mediated through the augmentation of AhR activity in 
the TME [104].

Dietary modulation is an appealing approach to shap-
ing the host microbiome towards a healthier micro-
bial ecological balance. Leveraging individual dietary 
responses in the context of cancer could allow for per-
sonalized diet plans that not only prevent or treat cancer 
and its complications but also optimize treatment out-
comes [164]. Dietary interventions can be considered one 
of the most cost-effective, safest, and simplest adjuncts 
to cancer treatment [121]. However, most existing stud-
ies are based on preclinical models and often overlook 
the interindividual variability in human physiological and 
disease responses [164]. Moreover, the complexity of can-
cer treatment regimens makes it challenging to maintain 
the balance of beneficial microbial communities, neces-
sitating professional dietary counseling and guidance 
[121]. These limitations could hinder the generalizability 
of dietary interventions across diverse patient popula-
tions, potentially reducing their effectiveness and leading 
to suboptimal outcomes in clinical settings. Therefore, 
future research should include more human-based clini-
cal trials that account for individual physiological and 
disease-related variations, tailoring dietary interventions 
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and treatment strategies to the specific microbiome and 
metabolic responses of each patient.

Engineered probiotics for modulating the intratumoral 
microbiome
The advancement of synthetic biology and genetic engi-
neering has led to the development of probiotic therapeu-
tics with high tolerance, high targeting and high loading 
capacity. To improve cancer treatment outcomes, the 
administration of engineered probiotics to modify or 
reconstruct the intratumoral microbiome and TME dis-
rupted by tumor cells has emerged as a novel therapeutic 
approach. Currently, the hypoxic environment associated 
with tumor growth has been identified as a potential 
therapeutic target. Building on this, Zi-Yi Han et al. devel-
oped an engineered probiotic therapeutic agent, LGG@
Ga-poly, which utilizes a Ga-polyphenol network and 
chitosan nanocoating to modify Lactobacillus rhamno-
sus. This agent selectively targets PDA tumors, suppresses 
intratumoral microbiota, and enhances T cell recruit-
ment, thereby reversing the immunosuppressive TME and 
improving the efficacy of ICI therapy [165]. In addition to 
enhancing cancer treatment, the use of engineered probi-
otics to regulate the intratumoral microbiome for cancer 
prevention is also a potential strategy. Ankan Choudhury 
et al. employed gene editing techniques to design Lacto-
coccus lactis engineered to secrete antimicrobial peptides 
(gAMPs) targeting H. pylori, which efficiently eradicated 
H. pylori within five days, thus preventing gastric cancer 
[166]. Emerging strategies involving engineered probiotic 
mimics also show promise. Qian Chen’s team developed 
a nanodrug mimicking F. nucleatum by fusing liposomes 
loaded with the antibiotic colistin with the cytoplas-
mic membrane of F. nucleatum. These liposomes, which 
express Fap-2 on their surface, specifically target colorec-
tal tumors overexpressing Gal-GalNAc and accumulate 
in the TME. This engineered mimic selectively eradicates 
F. nucleatum residing in the tumor, overcoming immune 
therapy resistance induced by this pathogen [167].

While the elimination of harmful intratumoral bacte-
ria can enhance anti-tumor efficacy, the question remains 
whether the preservation of beneficial intratumoral bacte-
ria could also promote cancer therapy. Existing studies have 
provided an answer. Zheng et al. found that abundant Strep-
tococcus within tumors of patients with oral squamous cell 
carcinoma can activate immune responses and is associated 
with a better prognosis [168]. To leverage this finding, they 
combined a viscous hydrogel containing silver nanoparticles 
with Streptococcus to promote its proliferation while sup-
pressing the growth of other intratumoral bacteria. When 
this formulation was combined with ICI therapy, it resulted 
in increased infiltration of CD8+ T cells and significantly 
enhanced the efficacy of immunotherapy [168].

Engineered probiotics possess tremendous potential 
as alternative therapeutic agents to genetically modi-
fied biopharmaceuticals such as monoclonal antibod-
ies and therapeutic proteins. The former can overcome 
the limitations of high production costs, short half-
lives, and delivery restrictions associated with the latter 
by secreting therapeutic proteins, delivering antigens, 
clearing pathogens, and modulating the immune system 
[169, 170]. However, the safety of engineered probiot-
ics remains a significant concern. There is a risk of gene 
leakage during the genetic modification process, and 
engineered probiotics may induce allergic reactions and 
inflammation in individuals with weakened immune 
systems [171]. Therefore, in the future development of 
engineered probiotics, researchers must select appropri-
ate genetic tools and design precise molecular switches 
to control and monitor the effects of these probiotics. 
Furthermore, a comprehensive understanding of the 
synthetic biology, heterologous expression, and secreted 
substances of the selected probiotics, along with strict 
regulation of bacterial dosage, is essential to balance 
therapeutic efficacy and bacterial toxicity.

Other intratumoral microbiota regulators
The small molecule inhibitor 5-FU, commonly used 
in anti-cancer treatment, demonstrates potent anti-
bacterial activity against intratumoral F. nucleatum, 
enhancing the efficacy of chemotherapy by inhibit-
ing the growth of this oncogenic bacteria within the 
tumor. In the context of CRC, where 5-FU serves as a 
first-line chemotherapy agent, its superior anti-tumor 
effects in CRC when compared to that in other can-
cers may be partially attributed to its inhibitory influ-
ence on major oncogenic microbes within the tumor 
while killing cancer cells. Additionally, this research 
highlights the ability of CRC intratumoral H. pylori to 
metabolize 5-FU, thus shielding F. nucleatum and CRC 
cells from 5-FU-induced harm [172]. The administra-
tion of antibiotics concurrently to eliminate this pro-
tective effect of intratumoral H. pylori could represent 
a viable strategy. Moreover, antibacterial metallopor-
phyrins also demonstrate notable inhibitory effects on 
intratumoral bacteria. Qu et al. devised an antibacterial 
nanoplatform loaded with gold nanoparticles utilizing 
fetal bovine serum albumin as a carrier and incorporat-
ing an antibacterial metalloporphyrin sonosensitizer. 
This platform effectively suppresses F. nucleatum in 
CRC tumors and reduces the levels of anti-apoptotic 
proteins in cancer cells, thereby enhancing the efficacy 
of sonodynamic therapy. Furthermore, this antibacte-
rial platform mitigates the generation of light-induced 
reactive oxygen species (ROS), thereby mitigating 
the inflammation and skin damage associated with 
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antibacterial metalloporphyrins [173]. Another strat-
egy based on protein-supported copper single-atom 
nanozymes targets both F. nucleatum and cancer cells 
by generating ROS and Glutathione (GSH), thereby 
achieving destruction of pathogen-tumor symbionts 
[174]. Moreover, the tumor microbiota is modulated 
by Col1 homotrimer, an aberrant homo-trimeric vari-
ant with specific carcinogenic properties produced 
by pancreatic cancer cells. Its absence induces a ben-
eficial alteration in the intratumoral microbial land-
scape, characterized by reduced Bacteroidales and 
increased Campylobacterales. This shift is associated 
with decreased MDSCs and increased T cells, thereby 
enhancing the efficacy of anti-PD-1 therapy. Nota-
bly, the use of broad-spectrum antibiotics abolishes 
this change, demonstrating the potential to enhance 
immunotherapy effectiveness by regulating the tumor 
microbiota through Col1 homotrimer [175]. These 
intratumoral microbiota modulators expand the ave-
nues for manipulating the microbiome to improve can-
cer treatment. Further research is needed to explore 
their feasibility and value, contributing to the accumu-
lation of more comprehensive evidence for future clini-
cal translation.

In summary, strategies to enhance cancer treatment 
by modulating the intratumoral microbiota, includ-
ing antibiotics, FMT, dietary interventions, and engi-
neered probiotics, represent promising avenues for the 
future. These approaches aim to regulate the tumor 
microenvironment by eradicating or reshaping the 
intratumoral microbial landscape, thereby promoting 
antitumor immunity. They offer innovative pathways 
to improve therapeutic efficacy and have the poten-
tial to address critical challenges associated with con-
ventional treatments, including off-target effects, drug 
resistance, and low response rates, underscoring their 
significant clinical translation potential. However, 
bridging the gap between laboratory discoveries and 
clinical implementation remains a formidable chal-
lenge. Currently, clinical trials for therapies target-
ing intratumoral microbiota are scarce, with lingering 
concerns about their safety and the need for enhanced 
efficacy. Given that intratumoral bacteria are not rep-
resented by a single species but rather by a diverse 
microbial community collectively influencing tumor 
behavior, the inherent heterogeneity among individu-
als complicates research and therapeutic development. 
Before any treatment recommendations can be made 
for cancer patients or individuals at risk of cancer, fur-
ther clinical studies are required to validate the safety 
and efficacy of these therapeutic strategies. Moreover, 
due to tumor heterogeneity, single-agent therapies 
often fall short of achieving complete tumor remission. 

Therefore, combining strategies that regulate intratu-
moral microbiota with traditional treatments such as 
chemotherapy, radiotherapy, and immunotherapy holds 
promise for achieving superior clinical outcomes. This 
integrated approach represents a critical direction for 
future clinical trials and a potential breakthrough in 
cancer treatment.

Challenges and prospects
The complete elucidation of intratumoral microbiome-
mediated immunomodulatory mechanisms and the 
precise identification of immunomodulatory intratu-
moral microbiome strains will help elucidate the effects 
of intratumoral microbiomes on tumor development 
and metastasis, improve the efficacy of tumor therapies, 
monitor tumor responses to therapies, and improve 
tumor prognosis. Although tremendous efforts have been 
made to achieve outstanding advances in this research 
field, further investigations still face the following chal-
lenges. First, the bacterial biomass in the tumor specimen 
was low; therefore, the bacterial genomic content was 
likely overwhelmed by the host/tumor genomic content, 
resulting in low PCR efficiency and inaccurate results 
[176]. Therefore, using commercial kits such as LYPMA 
and QIAamp, which can deplete the host/tumor genome, 
is the key to increasing the efficiency of intratumoral 
microbiome detection. Secondly, sample contamina-
tion is a serious issue. Sample contamination can occur 
during sampling, library preparation, or the utilization 
of detection kits [177]. This causes the data of the target 
intratumoral microbiome to be masked by contaminating 
bacteria, particularly when PCR amplifies the contami-
nant data. Newly developed bioinformatics programs, 
such as SourceTracker and Decontam, can be used to 
remove pollutant taxa [178, 179]. Third, the intratu-
moral microbiome and tumor cells may have co-evolved. 
Tumor cells constantly evolve to endure environmental 
pressures such as hypoxia and anti-tumor agents. When 
antibiotics are used to manipulate the microbiome dur-
ing immunotherapy, tumor cells may still undergo molec-
ular evolution (for example, stress-induced mutagenesis). 
The microbiome may undergo a similar evolution in the 
stressful tumor microenvironment [180, 181], and this 
co-evolution presents a more complex and refined chal-
lenge to deciphering the role of the intratumoral micro-
biome in tumors.

Understanding the ability of microbes to colonize the 
tumor microenvironment and interact with immune cells 
could contribute to the development of vaccines, targeted 
intratumoral microbiome therapies, and engineered pro-
biotics. The malignant crosstalk between tumors and the 
intratumoral harmful microbiota creates a vicious cycle 
within the tumor microenvironment, and antigen-based 
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vaccine delivery targeting the microbiota can signifi-
cantly inhibit tumor-associated microorganisms. Dur-
ing this process, the host generates robust systemic and 
mucosal antibody responses, along with cell-mediated 
immunity, which provide long-lasting protection and 
enable rapid recall upon subsequent exposure to homolo-
gous antigens. These responses typically involve the acti-
vation of T cell memory and effector subsets, as well as 
the induction of long-lived memory B cells [1]. Vaccine 
efficacy is typically measured by the quantity of antigen-
specific antibodies induced by the vaccine [2]. However, 
focusing solely on antibodies overlooks the complex-
ity of the immune system, which has evolved multiple 
defense mechanisms, including T cell responses and 
innate immunity to pathogens. For example, the presence 
of varicella-specific T cells, rather than just antibodies, is 
considered the best indicator of vaccine effectiveness [4]. 
The balance of multiple immune mechanisms, such as the 
combined evaluation of CD8+ T cell frequency and anti-
body titers, may synergistically contribute to the recog-
nition, control, and elimination of pathogens. Therefore, 
identifying the precise immune mechanisms associated 
with disease protection can provide valuable insights for 
designing more effective next-generation vaccines.

The core of antitumor immunity lies in the ability of 
immune cells to recognize and eliminate tumor-associated 
antigens. Bacteria, with their complex chemical composi-
tion and diverse antigens, can be recognized by the host 
immune system and trigger immune responses [182]. Lev-
eraging this property, bacteria can potentially produce or 
deliver tumor-associated antigens, stimulating specific and 
durable antitumor adaptive immune responses. This offers 
new avenues for developing targeted therapies against 
intratumoral microbiota and engineering probiotic-based 
strategies. In the realm of intratumoral microbiota-targeted 
therapies, bacteria within tumor and immune cells provide 
a novel source of antigenic epitopes. Eliminating intracel-
lular bacteria can expose these microbial-specific antigenic 
epitopes, generating new cancer-associated antigens and 
fueling antitumor immune responses [152]. One common 
approach to selectively eradicate intratumoral bacteria 
involves antibiotics. For example, liposome-encapsulated 
silver-metronidazole effectively eradicates F. nucleatum 
within tumors, releasing novel cancer-specific microbial 
antigens and promoting CD8+ cytotoxic T-cell infiltration 
[152]. Moreover, it has been demonstrated that bacterial-
induced T-cell responses can enhance antitumor immunity 
through cross-reactivity with MHC-I antigens in tumor 
cells, highlighting the ability of the microbiota to elicit 
specific T-cell responses [17]. Thus, both the heterologous 
epitopes of bacteria and their homologous epitopes shared 
with the host contribute to enhanced immunogenicity, 
facilitating T-cell recognition of tumor cells and thereby 

amplifying tumor suppression. In the context of engineered 
bacterial therapeutic strategies, bacteria serve as advanta-
geous vectors due to their capacity to activate the innate 
immune system, particularly macrophages and NK cells 
[183]. TAMs are key players in the immunosuppressive 
tumor microenvironment, exhibiting antigen-presenting 
and immunosuppressive properties that limit the efficacy 
of immunotherapies. It is well-established that TAMs exist 
in two polarized states: the antitumorigenic M1 phenotype 
and the protumorigenic M2 phenotype [184]. Engineered 
bacteria, such as nanoparticle-modified E.coli, can promote 
the polarization of M2 macrophages into the M1 pheno-
type and activate innate immune responses in vivo, thereby 
enhancing antitumor immunity [185]. Additionally, NK 
cells, as critical components of innate immunity, can rec-
ognize and lyse a variety of target cells. Engineered Salmo-
nella strains have been shown to activate NK cells through 
the production of IFN-γ, which, via self-regulatory feed-
back loops, promotes NK cells aggregation, activation, and 
cytotoxicity, achieving significant tumor suppression [186].
Targeted elimination of intratumoral microbiota and engi-
neered probiotic-based therapies effectively activate and 
regulate antitumor immune responses, highlighting the 
pivotal role of the immune system while offering innovative 
strategies for cancer treatment.

In contrast to its established role in cancer treatment, 
the application of the intratumoral microbiome in can-
cer diagnosis remains a significant challenge. The intra-
tumoral microbiome may confer distinct tumor-specific 
features, which could facilitate personalized and precise 
diagnostic approaches. In pancreatic cancer, a multi-bac-
terial scoring model based on 12 significantly enriched 
dominant bacterial species has shown robust and consist-
ent diagnostic performance, enabling reliable differentia-
tion between pancreatic ductal adenocarcinoma (PDAC) 
and other pancreatic tumor types. This model consistently 
achieved an AUC value exceeding 0.8 across training, test, 
and external validation cohorts [187]. Similarly, micro-
biome-based diagnostics have demonstrated strong dis-
criminatory power in central lung cancer. Salvador Bello 
et  al. identified a significant enrichment of Streptococ-
cus in the bronchial tissues of patients with central lung 
cancer. By using Streptococcus abundance as a diagnostic 
marker, they achieved sensitivity and specificity of 90.9% 
and 83.3%, respectively, in distinguishing central lung 
cancer patients from healthy controls [188]. In the future, 
utilizing microbiome-based features to identify tumors 
lacking any known oncogenic mutations may hold signifi-
cant potential for cancer screening and diagnosis.

Furthermore, investigating the roles of other intra-
tumoral microbiota, such as fungi, in tumorigenesis 
and immune regulation is of significant importance. 
Although evidence on the contribution of intratumoral 
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fungi in cancer remains limited, emerging findings sug-
gest that the composition and distribution of intratu-
moral fungi mirror those of bacteria, varying with tumor 
location [189]. Notably, certain cancer-specific fungal 
species, including Malassezia [190], Alternaria alternata 
[191], Aspergillus sydowii [192], and Candida albicans 
[193], have been identified to accelerate tumor develop-
ment. An additional critical perspective is the existence 
of fungus-bacteria-immune interactions in cancer. Lian 
Narunsky-Haziza and colleagues identified fungal-bac-
terial-immune clusters driven by fungal co-occurrences, 
which elicit distinct host immune responses. These 
clusters are associated with heightened inflammation, 
lymphocyte exhaustion, and pronounced macrophage 
activity, and they can predict improved overall survival 
(OS) [189]. Similarly, in gastrointestinal malignancies, 
Candida and Saccharomyces serve as predictors of host 
gene expression patterns and exhibit extensive interac-
tions with Lactobacillus species. Additionally, tumors 
enriched with Candida display a pro-inflammatory 
immune profile, characterized by upregulated genes 
involved in cytokine signaling, immune responses, and 
inflammation. Furthermore, patients with elevated Can-
dida infection rates exhibit significantly reduced survival, 
indicating that Candida could serve as a promising prog-
nostic biomarker for gastrointestinal cancer [194]. The 
emergence of cancer-specific fungi provides a promising 
starting point for investigating how intratumoral fungal 
symbiosis contributes to tumorigenesis through complex 
mechanisms, potentially paving the way for innovative 
therapeutic strategies and improved prognostic out-
comes for cancer patients.

Some questions regarding the intratumoral microbi-
omes also need to be resolved. First, it remains unclear 
whether intratumoral microbiomes adjust their genomes 
or affect the host genomes to adapt to the tumor micro-
environment. Further research should explore how 
they survive inside cells in the long term. Second, it is 
unknown whether different immunomodulatory path-
ways are involved in the regulation of unique intratu-
moral microbiomes in different tumor types. Despite 
the consensus that certain intratumoral microbiota 
play a causal role in tumor development, many ques-
tions remain unanswered. For example, how do specific 
microbes and microbial communities promote or inhibit 
tumor occurrence? In the future, more efforts should be 
made to elucidate the mechanisms underlying the role of 
intratumoral microbiomes in tumor development.

Conclusion
In conclusion, the tumor microbiome is a critical com-
ponent of the tumor microenvironment, significantly 
influencing cancer progression and immune responses. 

This review highlights three key points: first, advanced 
methodologies now allow for a more comprehensive 
exploration of the tumor microbiome, especially newly 
developed sequencing-based technologies, which pro-
vide innovative research methods for in-depth analysis 
of intratumoral microbiome. Second, specific microbial 
species have been identified as either malignancy pro-
moters (F. nucleatum, B. fragilis, P. gingivalis) or protec-
tive agents (A. muciniphila, Lactobacillus, Clostridium), 
underscoring their dual role in tumor immune regula-
tion. Lastly, manipulating the tumor microbiome pre-
sents a promising strategy for enhancing the effectiveness 
of cancer therapies. Future research should focus on inte-
grating microbiome-targeted interventions into broader 
cancer treatment frameworks to improve therapeutic 
outcomes.
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