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Abstract 

Mucosal‑associated invariant T (MAIT) cells are a unique subset of innate‑like T lymphocytes that bridge innate 
and adaptive immunity. Characterized by their semi‑invariant T cell receptor (TCR) and abundant localization 
in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthe‑
sis pathway, presented by the major histocompatibility complex (MHC)‑related protein 1 (MR1). This interaction, 
along with co‑stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activ‑
ity, highlighting their importance in maintaining immune homeostasis and combating infections. This review pro‑
vides an in‑depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, 
highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease 
(IBD), and context‑dependent dual functions in health and pathology. This review also highlights the emerging thera‑
peutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue‑homing proper‑
ties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)‑MAIT cells, 
targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR 
design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune 
function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. 
Further research is essential to unlock the full potential of these versatile immune cells.
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Introduction
Mucosal-associated Invariant T (MAIT) cells are an 
underexplored specialized subset of T cells that play a 
crucial role in mucosal immune responses, serving as 
a bridge between innate and adaptive immunity. Their 
unique biology and function are defined by the expres-
sion of a semi-invariant T cell receptor (TCR), com-
posed of an α-chain variable region (Vα) 7.2 (TRAV1-2) 
and an α-chain joining region (Jα) 33 (TRAJ33) paired 
with a limited set of beta chains (TRBV6, TRBV13, 
TRBV19, or TRBV20), enabling MAIT cells to recog-
nize microbial metabolites from the riboflavin biosyn-
thesis pathway presented by the monomorphic MHC 
class I-related molecule, MHC-related protein 1 (MR1) 
[1–4]. The semi-invariant TCR of MAIT cells and their 
restricting element, MR1, are highly conserved across 
mammals, underscoring their non-redundant roles tied 
to antigenic specificity, especially in mucosal and blood 
where they represent a substantial proportion of T cells 
[4, 5].

The ability of MAIT cells to recognize a broad range 
of microbes, coupled with their abundance and rapid, 
innate-like effector functions, suggests that they play a 
key role in human immunity. As mentioned, the primary 
antigens recognized by MAIT cells are metabolic adducts 
from the riboflavin biosynthesis pathway. These metabo-
lites are produced by many pathogenic bacteria, as well 
as members of the intestinal microbiota. Interestingly, 
these microbial ligands can cross epithelial barriers and 
circulate throughout the body. This indicates that MAIT 
cells may play a role in real-time immune surveillance of 
microbiota dysbiosis, even across intact epithelial barri-
ers [5]. Beyond their microbial recognition, MAIT cells 
exhibit functional plasticity, producing diverse cytokines 
and cytotoxic molecules, such as IL-17, IL-22, IFN-γ, 
and Granzyme B, which enable them to modulate local 
immune responses, promote tissue repair, and main-
tain epithelial integrity [6]. However, their roles extend 
beyond infectious diseases: emerging evidence highlights 
their involvement in non-communicable conditions such 
as cancer, autoimmune diseases, and chronic inflamma-
tory disorders [7–9]. These diverse roles in protection 
and pathology underscore the versatility of MAIT cells 
in immune regulation and their potential as therapeutic 
targets.

In this review, we examine multiple aspects of MAIT 
cells, from their biology and development to their roles 
in diseases and therapies. We discuss the phenotypic and 
functional diversity of MAIT cells, their interactions with 
the microbiota, and their contributions to immune sur-
veillance and tissue homeostasis. Additionally, we explore 
the emerging therapeutic potential of engineered MAIT 
cells, particularly in cancer immunotherapy, highlighting 

recent advances and identifying critical areas for future 
research.

Biology and development of human MAIT cells
MAIT cells are unique lymphocytes whose development 
begins in the thymus shortly after birth, where positive 
selection is mediated by MR1-expressing double-positive 
cortical thymocytes [3]. Emerging evidence suggests that 
this process may also involve selection by self-antigens 
presented in the thymus, MR1 in the absence of ligand 
binding, or microbial-derived antigens from commensal 
flora [10].

The selection mechanism of MAIT cells critically 
depends on signaling via the MAIT TCR alongside 
engagement of signaling lymphocytic activation mole-
cule-associated protein on cortical thymocytes. Follow-
ing positive selection, MAIT cell precursors progress 
through distinct developmental stages, transitioning 
from CD24⁺CD44⁻ to CD24⁻CD44⁻ through downregu-
lation of CD24 and upregulation of transcriptional regu-
lators such as KLF2, CD62L, and S1PR1, mirroring the 
differentiation trajectory of conventional T cells. This 
stage marks the initial expression of the lineage-defining 
transcription factor promyelocytic leukemia zinc finger 
(PLZF) [3, 11, 12]. Terminal differentiation yields CD24⁻
CD44⁺ cells that further diversify into functional subsets 
characterized by the expression of T-bet (MAIT1 subset) 
or RORγt (MAIT17 subset). These MAIT cell subsets 
exhibit distinct functional profiles and tissue tropism: 
MAIT1 cells preferentially localize to the spleen, lymph 
nodes, and liver, where they respond robustly to danger 
signals by expressing natural killer (NK) cell-associated 
receptors and producing cytotoxic molecules, includ-
ing interferon-γ (IFN-γ). In contrast, MAIT17 cells are 
enriched in barrier tissues such as the lung, skin, and gut, 
where they predominantly secrete IL-17 and IL-22, medi-
ators implicated in tissue repair and homeostasis [11, 13].

MAIT cell development also depends on a range 
of regulatory factors, including cytokine signal-
ing and thymic selection. During positive selection, 
MR1 presents antigens, such as vitamin B derivatives, 
driving progression through three distinct develop-
mental stages. Stage 1 MAIT cells are characterized by 
CD3⁺MR1-tet⁺CD27⁻CD161⁻IL-18R⁻ markers. In stage 
2, CD27 expression increases, transitioning the cells to 
a CD3⁺MR1-tet⁺CD27⁺CD161⁻ phenotype. Finally, stage 
3 cells acquire high IL-18R expression, exhibiting the 
signature CD3⁺MR1-tet⁺CD27⁺/⁻CD161⁺IL-18R⁺ pro-
file. Importantly, the use of MR1 tetramers is critical for 
accurately detecting MAIT cells, as monoclonal antibod-
ies may misidentify Vα7.2⁺ non-MAIT cells or exclude 
earlier-stage MAIT cells. Notably, MAIT cells continue 
to mature and develop distinct gene expression profiles 
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after exiting the thymus, influenced by their tissue locali-
zation. For instance, MAIT cells in the liver, lungs, and 
gut exhibit distinct functional profiles tailored to their 
respective environments. This ongoing maturation sup-
ports their functional specialization in immune surveil-
lance and barrier tissue maintenance.

In summary, advances in understanding MAIT cell 
biology have clarified their developmental trajectory and 
highlighted the distinct characteristics of each stage. This 
progress has also emphasized the need for precise detec-
tion methods to accurately distinguish MAIT cells from 
non-MAIT T cells, further advancing research into their 
roles in health and disease.

Phenotypic and functional characterization of human 
MAIT cells
Beyond developmental markers, additional characteri-
zation markers are essential for identifying and isolating 
MAIT cells, enabling subset distinction, activation state 
tracking, and exploration of functional roles in health and 
disease (Table  1). MAIT cells are broadly classified into 
circulating and mucosal subsets, each defined by distinct 
steady-state and activation phenotypes, which facilitate 
their differentiation and characterization. In humans, cir-
culating MAIT cells within the peripheral blood exhibit 
a homogeneous expression of IL-18Rα, CD161, and 
CD26, which facilitates their identification via cytometry 
[4, 14]. These cells display an effector memory pheno-
type  (CD45RO+,  CD27+,  CCR7−,  CD44high,  CD62Llow) 
and express an array of integrins and tissue-homing 
chemokine receptors  (CCR5high,  CCR6high,  CXCR6high, 
and  CCR9int), indicative of their capacity for migra-
tion toward sites of local inflammation [2, 4, 6, 14–21]. 
In contrast, mucosal MAIT cells are distinguished by 
the co-expression of tissue-resident markers CD69 and 
CD103. Although they share the effector memory pheno-
type observed in circulating MAIT cells, mucosal subsets 
exhibit higher levels of cutaneous lymphocyte-associated 
antigen [22, 23].

MAIT cells also exhibit population heterogeneity based 
on CD4/CD8 expression. Circulating MAIT cells pre-
dominantly consist of  CD8+ (~ 70%) and double-negative 
(~ 15%) subsets, with a low frequency of  CD4+ MAIT 
cells (~ 5%) [24]. In contrast, the double-negative subset 
is enriched within mucosal tissues, comprising ~ 40–50% 
of the total MAIT cell population [24]. Functionally, 
 CD8+ MAIT cells demonstrate superior pro-inflam-
matory potential, characterized by higher expression of 
CD16 and NKG2D, elevated production of TNF-α and 
IFN-γ, and increased cytotoxic capacity, as evidenced by 
Granzyme B content and CD107A expression upon stim-
ulation [25].

Activation mechanisms and functional regulation 
of human MAIT cells
Functional markers
MAIT cells can be activated through both TCR-depend-
ent and TCR-independent mechanisms. In the TCR-
dependent pathway, microbial metabolites presented 
by MR1 molecules, in conjunction with co-stimulatory 
signals from cytokines or toll-like receptors (TLRs), ini-
tiate MAIT cell activation. This enables MAIT cells to 
enhance local immune responses, including promot-
ing macrophage-mediated phagocytosis and recruiting 
immune cells to sites of inflammation [24]. Additionally, 
MR1-expressing cancer cells can serve as direct targets 
for MAIT cells, suggesting a potential role in tumor sur-
veillance. In TCR-independent pathways, MAIT cells can 
also be activated by pro-inflammatory cytokines such as 
IL-12, IL-18, and IFN-γ. This implies their involvement in 
antiviral defense, as studies have demonstrated the acti-
vation of  CD161+Vα7.2+ MAIT cells in human periph-
eral blood during clinical infections with viruses such 
as dengue, hepatitis C, and influenza A [26]. The abil-
ity of MAIT cells to respond to viral infections without 
TCR engagement suggests a broader role in host defense 
beyond bacterial recognition.

When activated, MAIT cells upregulate specific sur-
face markers and cytokines indicative of their activation. 
Notably, markers such as CD69 and CD25 are com-
monly associated with MAIT cell activation. CD69, a 
membrane-bounded C-type lectin receptor, is an early 
activation marker expressed on T cells, including MAIT 
cells [27]. Increased surface expression of CD69 has been 
reported in inflammation in autoimmune diseases. In 
particular, patients with ulcerative colitis exhibit a higher 
frequency of  CD69+ MAIT cells compared to healthy 
controls, underscoring its role as a marker of immune 
activation in diseases [28]. Additionally, in psoriasis, 
elevated CD69 expression on circulating MAIT cells in 
patient peripheral blood further supports its utility as 
a key indicator of their activation [29]. Another impor-
tant activation marker is CD25, which is also known as 
the IL-2 receptor alpha chain. Experimental findings have 
demonstrated that CD25 is upregulated following viral 
stimulation, serving as a reliable indicator of immune 
activation [30, 31]. In addition, the degranulation marker 
CD107a is also upregulated. The activation of MAIT cells 
not only involves surface marker upregulation but is also 
characterized by the production of various cytokines 
and cytotoxic molecules, which differ depending on the 
pathway involved. In TCR-dependent activation, rapid 
immune response is characterized by increased expres-
sion of RORγt and the production of cytokines such as 
IL-17A, TNF, and CSF2, indicative of a Tc17-like pheno-
type [32, 33]. In contrast, TCR-independent activation 
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primarily induces the release of IFN-γ, Perforin, and 
Granzyme B, regulated by the transcription factors PLZF 
and T-bet, which are linked to a Tc1-like phenotype [30].

Studying these MAIT cell functional markers offers 
therapeutic potential in infectious diseases, cancer, and 
autoimmune disorders. Modulating TCR-dependent/
independent, or cytokine-driven activation pathways 
could enhance immune responses or control inflamma-
tion, making MAIT cells promising candidates for immu-
notherapy across a range of conditions.

Transcription regulation
Upon activation, MAIT cells exhibit a robust produc-
tion of cytokines and activation markers. This dynamic 
response is tightly regulated by specific transcription fac-
tors, which trigger the downstream signaling pathways 
responsible for MAIT cell effector functions (Table 2). A 
key regulator of MAIT cell function is the transcription 
factor RORγt, which controls the production of IL-17A 
[34]. Beyond MAIT cells, RORγt is essential for the dif-
ferentiation of other immune cells involved in type 17 
immunity, such as Th17 cells, gamma delta T cells, and 
type 3 innate lymphoid cells, highlighting its broad role 
in regulating immune responses [35]. Although RORγt 
expression is nearly universal among MAIT cells, only a 
small fraction of these cells produces IL-17A ex vivo, sug-
gesting either a pre-committed IL-17-producing subset 
or a broader potential for IL-17 production under the 
appropriate conditions [14, 36].

PLZF plays a pivotal role in shaping the innate-like 
features of MAIT cells. Expressed early during MAIT 
cell development, PLZF establishes an effector-memory 
phenotype in these cells. It acts as a master transcrip-
tion factor, guiding MAIT cells toward their charac-
teristic rapid-response behavior upon activation [37]. 
PLZF is consistently expressed across MAIT cell subsets, 
including  CD8+,  CD4−CD8− double negative (DN), and 
 CD4+ cells, underscoring its central role in the functional 
maturation and maintenance of MAIT cells within the 
immune system [37].

T-bet is another critical transcription factor that mod-
ulates MAIT cell function, particularly shaping their Th1-
like responses. During TCR-mediated activation, T-bet 
drives the transcription of genes involved in cytotoxic-
ity and pro-inflammatory signaling, primarily promoting 
the production of IFN-γ, thereby strengthening MAIT 
cells’ ability to generate a robust immune defense. T-bet 
expression is notably higher in  CD8+ MAIT cells com-
pared to DN MAIT cells, highlighting its role in cytotoxic 
responses [38].

Eomesodermin, closely related to T-bet, is highly 
expressed in  CD8+ MAIT cells and is pivotal for their 
cytotoxic function. It regulates the expression of 

cytotoxic molecules such as Granzyme B and Perforin, 
essential for MAIT cells’ ability to eliminate infected or 
malignant cells [39]. Upon activation, eomesodermin 
ensures the transcription of these effector molecules, 
thus linking TCR engagement to the cytotoxic arm of 
MAIT cell function. Unlike in peripheral blood, eomeso-
dermin expression in mucosal MAIT cells, such as those 
in the endometrium, is more evenly distributed between 
 CD8+ and DN subsets, suggesting a tissue-specific regu-
lation of this transcription factor [38].

The transcriptional landscape of MAIT cells is not only 
dictated by their activation state but also by their tis-
sue localization. Comparative analyses of MAIT cells in 
blood and tissue reveal distinct transcriptional profiles, 
particularly in organs such as the liver. Liver-resident 
MAIT cells demonstrate enhanced activity of the tran-
scription factors AP-1 and NF-κB, both of which are 
instrumental in regulating inflammation and cytokine 
production [38]. AP-1, which includes proteins like FOS 
and JUN, and NF-κB are significantly upregulated in 
liver MAIT cells compared to their counterparts in the 
bloodstream. This elevation correlates with increased 
expression of genes associated with T cell activation, 
suggesting that liver-resident MAIT cells are primed for 
rapid immune responses. Additionally, the TCR-induced 
transcription factor EGR1 and RUNX3, which regulates 
tissue-resident memory cell differentiation, are more 
active in liver MAIT cells, further emphasizing the tis-
sue-specific adaptations of these cells [40].

The transcriptional regulation of MAIT cell activa-
tion is a complex, multifaceted process governed by a 
combination of factors such as RORγt, PLZF, T-bet, and 
eomesodermin. These transcription factors not only 
define the cytokine and cytotoxic responses of MAIT 
cells but also facilitate their adaptation to specific tis-
sue environments. Understanding how these transcrip-
tional programs cooperate in different contexts provides 
valuable insights into the diverse roles of MAIT cells in 
immune surveillance, inflammation, and tissue-specific 
immunity.

Tissue localization and immune surveillance of human 
MAIT cells
The distinct localization of MAIT cells across barrier and 
mucosal tissues is crucial to their function in immune 
surveillance. These cells are particularly enriched in 
mucosal sites, such as the gut, lungs, and liver, where they 
account for 20–40% of T cells compared to their smaller 
presence (1–4%) in peripheral blood [11, 41]. Their high 
abundance at these sites underscores their specializa-
tion in detecting microbial threats and preserving tissue 
integrity.
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Studies suggest that the tissue-specific distribution of 
MAIT cells is guided by the chemokine receptor CCR6, 
which binds to its ligand CCL20 expressed in mucosal 
tissues and the liver [42]. This receptor-ligand interac-
tion ensures their recruitment to key sites of immune 
surveillance, where their functionality is tailored to the 
local environment. In the liver, MAIT cells exhibit a dis-
tinct pattern of distribution, being dispersed through-
out the sinusoidal environment and portal fields, unlike 
other T cells, which are more localized to specific regions 
[42]. Liver-resident MAIT cells express activation mark-
ers, including CD69, HLA-DR, and CD38, which prepare 
them for rapid responses to microbial and inflammatory 
stimuli [43–45]. Functionally, they secrete IFN-γ and 
IL-17 in response to IL-12 and IL-18 stimulation dur-
ing TLR8 activation, contributing to antiviral immunity 
and the regulation of hepatic inflammation and fibrosis 
[43, 45, 46]. As the predominant IL-17-producing T cell 
population in the liver, MAIT cells drive hepatic inflam-
mation and fibrosis by activating Kupffer cells and biliary 
epithelial cells to release proinflammatory cytokines and 
chemokines [43, 46]. These functions underscore their 
critical role in liver immunosurveillance and regulation 
of immune responses to pathogens and tissue injury.

Beyond microbial defense, MAIT cells contribute to 
maintaining mucosal tissue integrity. In the gut, they pro-
duce IL-22 and IL-17, which are vital for epithelial repair 
and barrier maintenance [6]. IL-22 promotes the survival 
and proliferation of epithelial cells and stimulates mucus 

production by goblet cells, thereby reinforcing the physi-
cal barrier against pathogens [47, 48]. Meanwhile, IL-17 
regulates tight junction proteins, such as occludin, to 
minimize barrier permeability during epithelial damage 
[49]. These cytokines collectively strengthen the mucosal 
barrier and limit excessive inflammation by suppressing 
the activation of conventional proinflammatory T cells, 
such as Th1 and Th17 subsets [50]. Similar functions 
have been observed in other mucosal tissues, including 
the genital tract, where MAIT cells play a role in epithe-
lial repair and maintenance [24].

Collectively, MAIT cells are uniquely positioned in bar-
rier and mucosal tissues, where they act as key mediators 
of immune surveillance and response (Fig. 1). Their abil-
ity to produce a diverse array of cytokines and cytotoxic 
mediators enables them to combat microbial threats, 
maintain epithelial integrity, and regulate local immune 
activity. However, there are still knowledge gaps regard-
ing the specific mechanisms driving MAIT cell localiza-
tion in tissues. One promising approach to address this 
is studying the role of tissue-specific cytokines in polar-
izing MAIT cells toward pro-inflammatory or regula-
tory responses. For instance, exposing MAIT cells from 
various tissues to different cytokine combinations (e.g., 
IL-12/IL-18, IL-15/IL-18, IL-10, TGF-β) can reveal 
how the balance of pro-inflammatory and regulatory 
cytokines influences their function and role in inflam-
mation [51]. Additionally, exploring the dysregulation of 
MAIT cell activation and tissue homing in autoimmune 

Table 2 Key transcription factors, functional significance, and associated signaling pathways of human MAIT cells

Transcription factors Functional significance Related down-signaling pathways References

AP‑1 Regulates immune activation, proliferation, differentia‑
tion, and apoptosis; activated by TCR engagement, 
cytokines, and stress signals

Limited information; further research needed [27, 38]

BATF Promotes Th17 differentiation; enhances IFN‑γ produc‑
tion in cytokine‑stimulated MAIT cells

IFN‑γ signaling pathway [23, 40]

EGR1 Controls NKT lineage differentiation in response to TCR 
signaling

Limited information; further research needed [124]

Eomesodermin Highly expressed in  CD8+ MAIT cells; critical for cyto‑
toxic activity; evenly distributed between  CD8+ and DN 
MAIT cells in mucosal tissues

Regulates cytotoxic mediators such as Granzyme B 
and Perforin

[38]

Helios Controls immune tolerance; regulates Tregs; suppresses 
inflammation; prevents excessive activation

Limited information; further research needed [11, 98]

NF‑κB Central regulator of inflammation, cell survival, and pro‑
liferation

AHR signaling pathway [38]

PLZF Required for MAIT cell maturation (stage 2 to 3); drives 
CD44 expression; regulates CCR6 expression

TCR‑independent activation pathway (via IL‑12 
and IL‑18 signaling)

[34]

RORγt Controls IL‑17 production; promotes a Tc17 phenotype; 
essential for IL‑23 receptor expression

IL‑17 signaling pathway [23, 24, 60]

RUNX3 Regulates PLZF expression; involved in T cell differentia‑
tion, especially  CD8+ T cells

May regulate TCR‑independent activation via PLZF [34]

T‑bet Promotes a Tc1 phenotype; regulates the production 
of IFN‑γ

IFN‑γ signaling pathway; IL‑12 signaling pathway; 
NF‑κB signaling pathway

[11, 38, 125]
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disease pathogenesis offers another critical avenue. In 
multiple sclerosis, for example, MAIT cells infiltrate the 
brain, producing pro-inflammatory cytokines that may 
contribute to neuroinflammation [52]. In IBD, although 
MAIT cell frequency is reduced in peripheral blood, 
they accumulate in inflamed mucosa, suggesting a role in 
intestinal inflammation and tissue repair [53]. However, 

MAIT cells may also contribute to the pathogenesis of 
IBD. Upon activation, MAIT cells upregulate NKG2D, an 
activation receptor for NK cells, which further induces 
the expression of proinflammatory cytokines [8]. Clini-
cal trials have shown that treatment with anti-NKG2D 
mAb can induce clinical remission in some patients with 
CD, highlighting the role of NKG2D in CD pathogenesis 

Fig. 1 Tissue distribution and biological function of human MAIT cells. This figure illustrates the distribution of MAIT cells across various tissues 
in the human body. It shows the percentage of MAIT cells in each tissue, highlighting their localization and unique functional characteristics 
within the tissue microenvironment
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[54]. Additionally, in an oxazolone-induced mouse model 
of colitis, inhibiting MAIT cell activation through MR1 
knockout or administration of the MR1 antagonist isobu-
tyl 6-formylpterin has been shown to mitigate the sever-
ity of UC [55]. Studies focusing on the mechanisms of 
MAIT cell recruitment and their production of regula-
tory cytokines like IL-10 and IL-22 could provide valu-
able insights into their protective roles in autoimmune 
diseases.

Interactions between human MAIT cells and the microbiota
The immune system and the microbiota maintain a close, 
mutually dependent relationship. As a crucial part of the 
immune system, MAIT cells mainly respond to bacte-
ria through TCR recognition of metabolites generated 
in the vitamin B2 (riboflavin) biosynthetic pathway [5]. 
Studies have demonstrated that disrupting or inhibit-
ing riboflavin metabolism in various bacteria suppresses 
MAIT cell responses, confirming that this pathway pro-
duces antigens targeted by MAIT cells [56–59]. This con-
nection demonstrates the selective nature of MAIT cell 
responses and their reliance on specific bacterial meta-
bolic pathways.

Early-life exposure to the microbiota is crucial in shap-
ing MAIT cell development and function. Research in 
germ-free mice has demonstrated that MAIT cells are 
absent or underdeveloped without microbial exposure 
[60]. Additionally, the timing of microbial colonization 
plays a critical role in MAIT cell maturation. For instance, 
recolonizing neonatal germ-free mice with early-life 
intestinal commensal bacteria before the third week of 
life promotes MAIT cell development, whereas coloniza-
tion beyond this critical window fails to trigger the same 
result [60, 61]. This time-sensitive interaction highlights 
a developmental window during which exposure to spe-
cific microbial signals is essential for effective MAIT 
cell function. Although the microbiota composition dif-
fers between humans and mice, the principles govern-
ing MAIT cell development appear conserved [62]. Both 
species require exposure to microbial-derived ribofla-
vin metabolites for MAIT cell maturation. Variability in 
early-life microbial exposures, influenced by factors like 
delivery mode and environment, likely contributes to the 
diversity in MAIT cell abundance observed in humans. 
Insights from germ-free mouse models highlight the 
translational potential of targeting riboflavin metabolites 
to modulate MAIT cell function in infections and inflam-
matory conditions.

Beyond development, MAIT cells are essential for 
maintaining mucosal homeostasis and ensuring protec-
tion against infections. They are strategically positioned 
at barrier sites, such as mucosal surfaces, where they 
provide localized immune surveillance and promote 

tissue repair following microbial disturbances [61]. For 
example, MAIT cells promote tissue repair in response 
to microbial disturbances. Through MR1-mediated 
presentation of riboflavin, MAIT cells recognize skin 
commensals, facilitating cutaneous wound healing and 
contributing to homeostasis. In the presence of commen-
sal organisms, these cells activate tissue-repair pathways, 
supporting the maintenance of epithelial integrity and 
barrier function [60]. Their interaction with the micro-
biota ensures mucosal health by sustaining a balanced 
immune response and preventing pathogen colonization.

Human MAIT cells in health and disease
MAIT cells play a dual role in health and disease, con-
tributing to both homeostasis and pathology. In a healthy 
state, MAIT cells maintain tissue integrity and immune 
balance, but their dysfunction is linked to dysbiosis—dis-
ruptions in microbial composition and diversity—which 
is implicated in diseases such as cancer, inflammatory 
bowel disease, obesity, and metabolic disorders [63–66].

Gut diseases
The gut microbiota and MAIT cells interact in a bidirec-
tional relationship that shapes immune responses in the 
intestinal mucosa. For instance, Bacteroidetes, abundant 
in the gut, strongly stimulate MAIT cells and influence 
their phenotype [67]. MAIT cells, in turn, protect the 
gut by recognizing riboflavin-derived metabolites pre-
sented by the MR1 molecule, allowing rapid responses to 
microbial challenges. These responses include cytokine 
release (e.g., IL-17 and IL-22), which maintains epithe-
lial barrier function and promotes tissue repair [68]. 
However, there is also evidence showing the conflicting 
role of MAIT cells in gut diseases. In Crohn’s disease, 
MAIT cells accumulate in the ileal mucosa and exhibit 
a pro-inflammatory Th17 phenotype, secreting high lev-
els of IL-17 and reduced IFN-γ upon stimulation [28]. In 
ulcerative colitis, MAIT cells are enriched in the colonic 
mucosa and display increased CD69 expression alongside 
elevated production of IL-17 and IL-22, correlating with 
disease activity [28]. These findings suggest that while 
MAIT cells contribute to gut protection, their dysregu-
lation may drive chronic inflammation. The mechanisms 
by which MAIT cells balance protective immunity and 
inflammation in gut diseases remain poorly understood.

Autoimmune disorders
Beyond the gut, MAIT cell dysfunction is implicated in 
systemic autoimmune diseases, where altered microbial 
antigens and pro-inflammatory cytokines drive abnor-
mal activation. This activation may lead to target cell kill-
ing and recruitment of other immune cells, disrupting 
immune tolerance and exacerbating inflammation [8]. 
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In multiple sclerosis, peripheral MAIT cell levels exhibit 
dynamic fluctuations, decreasing during remission, fur-
ther declining during relapses, reaching lower levels in 
active disease compared to stable cases, and increasing 
during clinical recovery [52]. This reduction may result 
from IL-18-driven activation and infiltration of  CD8+ 
MAIT cells into the central nervous system [69]. Sup-
porting this hypothesis, multiple sclerosis lesions exhibit 
massively expanded and persistent T cell populations 
that express canonical or atypical MAIT cell-related α 
chains compared to healthy tissue samples [70]. Similar 
fluctuations are observed in systemic lupus erythemato-
sus, rheumatoid arthritis, and Sjögren’s syndrome, where 
altered MAIT cell activation and presence contribute to 
disease progression. These patterns highlight the central 
role of MAIT cells in autoimmune pathology and their 
potential as therapeutic targets [71–77].

Cancer
MAIT cells exhibit dual roles in cancer, acting as both 
protective and pathological agents depending on the can-
cer type and microenvironment. In mucosal-associated 
cancers, such as colorectal cancer (CRC), MAIT cells 
are enriched in malignant tissues compared to adjacent 
healthy tissue [7, 78, 79]. However, they are found at 
lower frequencies in CRC liver metastases [80], suggest-
ing distinct patterns of infiltration between primary and 
metastatic sites. In blood cancers like multiple myeloma, 
patients exhibit reduced circulating MAIT cells and 
impaired IFN-γ production [81, 82]. This phenomenon 
may result from generalized lymphocytopenia com-
monly associated with blood cancers, the replacement of 
healthy cells by malignant ones, the depletion of MAIT 
cell precursors, or, in rare cases, the malignant transfor-
mation of MAIT cells themselves [7, 81–84].

Given the complex role of MAIT cells in cancer, they 
may also influence the efficacy of cancer therapies, such 
as chemotherapy, immune checkpoint inhibitors, and 
chimeric antigen receptor (CAR)-engineered cell ther-
apy. The variability in MAIT cell responses and charac-
teristics across different cancer types underscores the 
complexity of their role in cancer immunity. For exam-
ple, in hepatocellular carcinoma, MAIT cells are found 
at lower frequencies in tumors compared to healthy tis-
sues, and this reduction is associated with poor prog-
nosis, suggesting a potential anti-tumor role for MAIT 
cells [85]. However, in the same context, MAIT cells 
exhibit increased expression of inhibitory receptors, 
including PD-1, CTLA-4, and TIM-3, which drive T 
cell exhaustion and impair their anti-tumor function [7, 
86]. Additionally, these cells can produce elevated lev-
els of pro-tumorigenic IL-8, facilitating the recruitment 
of immunosuppressive myeloid-derived suppressor cells 

into the tumor microenvironment [87, 88]. In CRC, an 
increased presence of MAIT cells within tumor sites cor-
relates with poor prognosis, suggesting a tumor-promot-
ing role for these cells [78]. This heterogeneity suggests 
that MAIT cells could either support or hinder therapeu-
tic outcomes, depending on the specific cancer context 
and therapeutic approach. Further research is needed 
to clarify how MAIT cells can be modulated to enhance 
therapeutic efficacy.

Human MAIT cells for therapeutic applications
Cancer
The development of adoptive T cell therapy in the past 
two decades has plenished the engineering strategies to 
harness immune cells to mediate antitumor and antiviral 
responses. MAIT cells possess unique potential for can-
cer treatment with their semi-invariant TCR and mucosal 
tissue-homing properties. While studies in mouse mod-
els have shown that 5-OP-RU stimulation enables MAIT 
cells to suppress tumor metastasis through an NK cell-
associated, IFN-γ, and TNF-mediated mechanism, the 
role of MAIT cells in human cancer immunity is more 
complicated [89]. Their activation depends heavily on 
MR1-expressing antigen-presenting cells, which may 
limit their direct tumoricidal capabilities. However, in 
cancer with distinct traits of microbiota like CRC, bac-
terial antigens are extensively presented and MAIT cells 
could be activated subsequently. For instance, a CRC-
related strain, Fusobacteria nucleatum, is identified with 
the capability to activate MAIT cells in a TCR-dependent 
manner [90].

To date, current research still indicates that TCR-
mediated MAIT cell activation is strictly dependent on 
MR1-vitamin B-related antigen (VitBAg). MR1 is consid-
ered monomorphic and exhibits limited genetic variation 
between individuals, which is unlikely to be a major tar-
get for allogeneic recognition by MAIT cells, resulting in 
a mitigated allogeneic response for cell therapy. However, 
the MR1-VitBAg and antigen presenting cell-dependent 
manner is also limiting the tumoricidal capability of 
MAIT cells since they can only recognize MR1-restricted 
tumoral antigens. Engineering MAIT cells with CAR 
could enhance their direct tumoricidal capability. The 
expanding repertoire of CAR designs and combinational 
therapies has addressed major challenges in CAR-T effi-
cacy, including tumor microenvironment infiltration 
and delivery strategies, making them highly compatible 
with MAIT cells [91]. Meanwhile, the unique proper-
ties of MAIT cells highlight the advantages of engineer-
ing CAR-MAIT cells for cancer immunotherapy (Fig. 2). 
First, MAIT cells are prevalent in peripheral blood, 
where they exhibit mostly tumoricidal phenotype. Sec-
ond, MAIT cells have highly restricted TCR dependent 
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on MR1-VitBag, the activation of CAR-MAIT cells could 
be regulated by administration of agonists. MR1 expres-
sion in host cells is considered monomorphic, which 
could minimize allogeneic rejection of CAR-MAIT 
cells. Third, MAIT cells are potential adjuvant to initiate 
NK cell-mediated anti-tumor immunity. The crosstalk 
between CAR-MAIT cells and NK cells could result in 
multiple tumoricidal mechanisms.

In one study, introducing human EGF receptors and 
CD19 CARs to MAIT cells resulted in cytotoxic activ-
ity comparable to CAR-CD8 T cells in  vitro, but with 
reduced production of IFN-γ and GM- CSF, cytokines 

associated with CAR-T cell function and cytokine release 
syndrome (CRS) [92]. This raises the question of whether 
CAR-MAIT cells could mitigate the side effects of CRS 
while preserving their antitumor efficacy. Meanwhile, 
advances in induced pluripotent stem cell (iPSC)-derived 
MAIT cells paved another route for CAR-MAIT manu-
facture [93]. Adoptive transfer of iPSC-derived murine 
MAIT cells prior to tumor inoculation significantly pro-
tected mice from metastasis formation and resulted in 
prolonged survival. Notably, the cytotoxicity of MAIT 
cells against tumor cell lines was observed in the absence 
of 5-OP-RU. In  vivo depletion of NK cells could nullify 

Fig. 2 Therapeutic applications of human MAIT cells. This figure highlights potential therapeutic applications of MAIT cells in three key areas: 
cancer, viral infections, and autoimmune diseases. Each area is examined in detail, emphasizing the unique characteristics of MAIT cells that make 
them suitable for therapeutic use and their potential for clinical innovation. TME, tumor microenvironment
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the anti-tumor effects of MAIT cells, emphasizing the 
critical role of NK cells in this therapy.

MAIT cells have been found in the tumor microenvi-
ronment of a variety of solid tumors, including colorec-
tal cancer, hepatocellular carcinoma, lung cancer, gastric 
cancer, kidney cancer, and brain cancer, with elevated 
tumor-infiltrating MAIT cells observed in colorectal can-
cer and hepatocellular carcinoma [2, 86, 90, 94]. Despite 
this, most of these tumor-infiltrating MAIT cells display 
an activated and exhausted phenotype, characterized by 
increased expression of activation markers (HLA-DR, 
CD38) and immune checkpoint molecules (PD-1, CTLA-
4, TIM-3). Similarly, in hematological malignancies such 
as multiple myeloma, MAIT cells in peripheral blood 
show increased PD-1 expression. Importantly, in  vitro 
PD-1 blockade restored MAIT cell function, suggesting 
that MAIT cell-based therapies could potentially benefit 
from strategies involving immune checkpoint blockade 
[81].

Viral infections and other diseases
MAIT cells are key players in antiviral immunity, but 
their responses vary depending on the infection type and 
stage. In chronic viral infections, including HIV, HBV, 
HCV, and HDV, MAIT cell frequencies are consistently 
reduced, with this decline persisting even after antivi-
ral therapy, suggesting irreversible dysfunction [95–98]. 
Despite these challenges, MAIT cells demonstrate anti-
viral activity, as shown in  vitro where they restrict HIV 
infection via upregulation of antiviral chemokines like 
CCL4 [95]. In acute viral infections, MAIT cell responses 
differ. For example, during acute HIV infection, MAIT 
cell counts initially increase but decline as the infection 
becomes chronic [95]. Also, MAIT cells are activated in 
acute viral infections such as Dengue virus (DENV) and 
Zika virus (ZIKV) [26, 99]. DENV infection in humans 
has been associated with heightened MAIT cell activa-
tion, as indicated by increased CD38 and Granzyme B 
expression, while only a slight reduction in MAIT cell 
frequency was observed in the blood [26, 99, 100]. In 
in  vitro ZIKV infection, MAIT cells are activated and 
express IFNγ in an IL-18-dependent manner [99, 100].

Moreover, although human lung contains relatively 
fewer MAIT cells compared to liver, these cells can 
exhibit both protective and pathogenic functions in 
viral infections affecting the respiratory tract [101]. In 
humans, MAIT cell activation in response to influenza 
virus-infected lung epithelial cells in  vitro is mediated 
by IL-18, which induces the expression of IFN-γ and 
Granzyme B, and higher level of MAIT cells has been 
correlated with better clinical outcomes [30, 99, 102]. 
Similarly, SARS-CoV-2 infection leads to both MAIT cell 
activation and depletion in peripheral blood. Notably, 

IL-7 treatment has shown potential in reversing MAIT 
cell dysfunction in SARS-CoV-2 [103], offering a glimpse 
into how therapeutic interventions might enhance MAIT 
cell function. However, in patients with severe infection 
of SARS-CoV-2, elevated MAIT cell activation levels are 
also associated with and serve as a predictor of mortal-
ity [99, 104–106]. Flament et  al. reported that in severe 
COVID-19, the MAIT cell phenotype undergoes a pro-
gressive shift from a type I IFN immune profile to an 
IL-18 immune environment, mediated by a transcrip-
tional switch in monocytes and macrophages, which sug-
gests that IL-18 can drive both protective and pathogenic 
MAIT cell responses, depending on the disease con-
text [105]. These findings underscore both the antiviral 
potential of MAIT cells and the challenges associated 
with their dysregulation in viral infections.

Building on this understanding, advances in immune 
engineering offer opportunities to enhance MAIT cell 
activity and direct their functions for therapeutic applica-
tions [13]. The success of CAR-T cell therapy in treating 
cancers and viral infections provides a robust framework 
for exploring engineered MAIT cells. CAR-T cells are 
engineered to express synthetic receptors that enable 
precise targeting of antigens without MHC dependence. 
By applying similar principles, MAIT cells could be engi-
neered to express CARs that specifically recognize viral 
antigens, amplifying their natural antiviral activity and 
enabling them to target infected cells more effectively 
[13]. Preliminary studies have demonstrated the feasibil-
ity of generating CAR-engineered MAIT cell, highlight-
ing their potential as a novel approach for combating 
viral infections [107]. MAIT cells’ unique tissue-homing 
properties and responsiveness to microbial antigens offer 
distinct advantages for engineering. For example, CAR-
MAIT cells could be designed to localize in mucosal 
tissues where viral replication often occurs, providing 
targeted immune responses with reduced systemic tox-
icity. Additionally, their potential adaptability to chronic 
infections, such as HIV, or acute infections, like SARS-
CoV-2, highlights their versatility.

Beyond antiviral applications, engineered MAIT cells 
offer exciting possibilities for autoimmune diseases and 
cancers with microbial component involvement [90]. 
Their unique ability to respond to microbial-derived anti-
gens could be harnessed to modulate immune responses 
in inflamed tissues or target tumors with microbial com-
ponents. The success of CAR-T cell therapy in autoim-
mune diseases highlights the potential of CAR-based 
approaches in modulating immune activity. For example, 
BCMA-targeting CAR-T cells are being investigated for 
myasthenia gravis, while anti-CD19 and dual anti-CD19/
anti-CD20 CAR-Ts are being tested for lupus and neuro-
myelitis optica spectrum disorders [108–110]. Building 
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on these advancements, the integration of MAIT cell 
biology with immune engineering could unlock innova-
tive therapeutic strategies. However, further research 
is needed to optimize CAR designs for MAIT cells, 
enhance their isolation and expansion, and address chal-
lenges such as T cell exhaustion and antigen escape. 
Leveraging the innate-like properties of MAIT cells pre-
sents a potential strategy for enhancing tumor targeting. 
As a subset of innate-like T cells, MAIT cells express a 
semi-invariant TCR that recognizes MR1, which has 
been reported to be upregulated in certain malignancies, 
including myeloid leukemias and some epithelial can-
cers. Additionally, MAIT cells express NK receptors (e.g., 
NKG2D), enabling them to recognize stress-induced NK 
ligands such as MICA/B and ULBP family members on 
tumor cells. Notably, tumor cells may upregulate these 
ligands following treatment with hypomethylating agents 
or DNA-damaging chemotherapy, enhancing their sus-
ceptibility to MAIT cell-mediated cytotoxicity. This 
suggests a potential “triple-targeting” mechanism, inte-
grating CAR, MAIT TCR, and NK receptor-mediated 
recognition, similar to strategies demonstrated in iNKT 
cells [111]. In addressing T cell exhaustion, the addition 
of cytokines such as IL-15 to the CAR construct could 
provide a promising solution. IL-15 is known to promote 
the survival, proliferation, and memory formation of T 
cells, while also enhancing the functionality of innate-like 
T cells, including MAIT cells [111]. This could mitigate 
the effects of exhaustion by maintaining the persistence 
and activity of CAR-MAIT cells in  vivo, ultimately 
improving their therapeutic efficacy. Further investiga-
tions are necessary to optimize CAR designs, determine 
the ideal cytokine combinations, and evaluate the long-
term safety and efficacy of CAR-MAIT cells in preclinical 
and clinical settings.

However, MAIT cells play a complex role in autoim-
mune diseases, contributing to both inflammation and 
immune regulation. They produce pro-inflammatory 
cytokines, including IL-17, TNF-α, and IFN-γ, which 
drive tissue damage in conditions such as rheumatoid 
arthritis, ankylosing spondylitis, psoriatic arthritis, and 
IBD, where IL-17 is a key pathogenic factor [112–114]. 
MAIT cells also express homing receptors that facili-
tate their accumulation in inflamed tissues, such as the 
synovial fluid in arthritis and the intestinal mucosa 
in IBD, further exacerbating inflammation [115, 116]. 
Additionally, MAIT cells can disrupt immune tolerance 
by responding to non-microbial antigens, leading to 
abnormal immune activation. In diseases like systemic 
lupus erythematosus and dermatomyositis, MAIT cells 
undergo activation-induced cell death, suggesting a 
potential role in disease progression [72]. These com-
plexities pose challenges for the use of MAIT cells as 

therapeutic agents in autoimmune diseases. While their 
regulatory and tissue-repair functions make them attrac-
tive candidates, their pro-inflammatory properties raise 
concerns about exacerbating disease pathology. Thus, a 
deeper understanding of MAIT cell function in differ-
ent autoimmune contexts is essential before considering 
their therapeutic application.

Future directions
Despite significant advancements in understanding 
MAIT cells, many critical aspects remain unexplored, 
offering opportunities for further research and therapeu-
tic innovation. A key area of interest is uncovering the 
tissue-specific roles of MAIT cells. These cells are found 
across mucosal tissues, the liver, and blood, but how their 
functions adapt to different microenvironments remains 
unclear [24, 117]. Investigating these variations could 
provide important insights into how tissue-specific fac-
tors influence their roles in immune surveillance and reg-
ulation, which could inform disease treatment strategies.

Another challenge lies in understanding the balance 
between the protective and pathogenic roles of MAIT 
cells. While they contribute to tissue repair and barrier 
integrity, their pro-inflammatory and cytotoxic activities 
can lead to immune-mediated damage [118]. Decipher-
ing the molecular mechanisms that regulate this balance, 
including the influence of the microbiota, is crucial. Tar-
geting microbiota-driven pathways could offer innovative 
strategies to modulate MAIT cell activity, particularly in 
conditions involving excessive inflammation or fibrosis.

Furthermore, MAIT cells also play complex roles in 
diseases such as cancer and viral infections. Their dual 
functions—cytotoxicity via IFN-γ production and tissue 
repair through IL-22—can either suppress or promote 
disease, depending on the context [119]. Signals from 
the tumor microenvironment or tumor-associated bac-
teria could influence these outcomes, offering potential 
therapeutic insights. In viral infections like COVID-19, 
MAIT cells display dynamic redistribution and cytokine 
responses, suggesting roles in both inflammation and 
recovery [119]. Understanding these mechanisms, espe-
cially in non-bacterial contexts, is vital for unlocking the 
potential of MAIT cells in these diseases.

Finally, as interest in immunotherapy continues to 
grow, particularly in the fields of cancer and infectious 
diseases, the therapeutic potential of MAIT cells is gain-
ing significant attention. One promising approach is 
optimizing MAIT cell-targeted therapies, including vac-
cines designed to selectively activate these cells without 
triggering excessive inflammation. Such therapies could 
enhance mucosal immunity, providing a more focused 
and effective immune response. Additionally, the devel-
opment of CAR-MAIT cells—engineered MAIT cells 
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expressing chimeric antigen receptors—offers excit-
ing possibilities for targeting specific antigens on can-
cer cells or infected tissues [120]. This approach could 
combine the tissue-repairing properties of MAIT cells 
with the precision of CAR-based therapies, expanding 
their potential in treating a range of diseases. By utiliz-
ing the unique features of MAIT cells, such as their rapid 
response to infection and tissue damage, CAR-MAIT 
therapy could provide a powerful tool for both cancer 
immunotherapy and infectious disease management. 
Moving forward, further research into optimizing these 
therapeutic strategies will be critical to unlocking the full 
potential of MAIT cells in clinical applications.

Conclusion
MAIT cells are pivotal players in bridging innate and 
adaptive immunity, with their roles extending across 
health and disease. This review highlights key aspects 
of MAIT cell biology, including their development, acti-
vation mechanisms, functional diversity, and tissue-
specific adaptations. While their thymic development 
and peripheral maturation are defined by distinct mark-
ers and transcription factors, their strategic localization 
in mucosal tissues and barrier sites underscores their 
importance in immune surveillance and tissue homeo-
stasis. MAIT cells play a crucial role in controlling bac-
terial and fungal infections through their production of 
cytokines, including IFN-γ, TNF-α, and IL-17, as well as 
cytotoxic molecules such as Granzyme B and Perforin. 
These distinctive features highlight their significance in 
immune defense and underscore their potential as ther-
apeutic targets for infectious diseases. The activation of 
MAIT cells, through TCR-dependent and independ-
ent pathways, equips them to respond dynamically to 
microbial metabolites and pro-inflammatory cytokines, 
emphasizing their dual roles in protective immunity and 
disease pathogenesis.

Recent advances highlight the potential of MAIT cells 
in therapeutic immunology. Their unique TCR speci-
ficity, abundance in mucosal tissues, and potent effec-
tor functions position them as promising candidates for 
cell-based therapies. Engineering MAIT cells to express 
CARs targeting tumor or viral antigens could signifi-
cantly enhance their therapeutic efficacy. The emergence 
of iPSC-derived MAIT cells offers exciting possibilities 
for scalable and customizable CAR-MAIT cell therapies. 
However, challenges such as T cell exhaustion, antigen 
escape, and the optimization of CAR designs remain to 
be addressed.

Further research is essential to uncover the intri-
cate tissue-specific roles of MAIT cells, the regulatory 
interplay with the microbiota, and their potential in 
immune modulation. By addressing these challenges 

and expanding our understanding, MAIT cell-based 
therapies can be refined to unlock their full potential in 
treating a range of diseases, from infections to cancer 
and autoimmune disorders, ultimately improving clini-
cal outcomes.
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