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Beyond vessels: unraveling the impact 
of VEGFs on neuronal functions and structure
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Abstract 

Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling 
of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth 
factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial 
cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence 
shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic 
and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neu-
rons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it 
has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and main-
tenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific 
and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network 
function, as well as the association of morphological abnormalities with neurological and neurodegenerative dis-
orders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, 
and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal func-
tions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
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Introduction
The vascular endothelial growth factor (VEGF) family, 
part of the VEGF/ platelet-derived growth factor (PDGF) 
superfamily, consists of secreted glycoproteins. These 
proteins regulate endothelial cell proliferation, migration, 
and survival, playing essential roles in cardiovascular and 
lymphatic system development and maintenance [1]. In 
mammals, the VEGF family includes VEGFA—commonly 

known simply as VEGF-, placental growth factor (PlGF), 
VEGFB, VEGFC, and VEGFD [2–8]. VEGFD and VEGFC 
are classified as a subfamily within the VEGF family due 
to their close structural similarity [8, 9]. Additionally, 
VEGF-like proteins have been identified in Orf viruses 
(VEGFE) [10–12] and snake venom (VEGFF) [13–15]. 
A thorough phylogenetic analysis of the VEGF family is 
already available [16]. This review will focus on mamma-
lian VEGFs.

Protein structure of the VEGF family
Alternative splicing, protein glycosylation, and pro-
teolytic processing lead to a further diversity of VEGF 
isoforms with distinct biochemical properties and recep-
tor interaction affinities [17–20]. Proteolytic process-
ing serves as a critical mechanism in the VEGF family, 
particularly for VEGFC and VEGFD, regulating their 
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maturation and receptor affinities [9, 19, 21]. Most 
VEGFs exist as monomers or anti-parallel homodimers 
and VEGFA, PIGF and VEGFB additionally form heter-
odimers [5, 21–24]. The VEGF homology domain (VHD) 
supports dimerization through a cystine knot motif, a 
characteristic of the VEGF/PDGF superfamily [25–27]. 
The cystine knot motif consists of eight or, in the case 
of VEGFD and VEGFC, nine regularly spaced cysteine 
residues which form intra- and intermolecular disulfide 
bonds that play a crucial role for structural stability and 
dimerization of VEGFs [8, 25–28]. However, the addi-
tional cysteine residue in VEGFC and VEGFD reduces 
dimer stability and homodimers of proteolytically pro-
cessed mature VEGFD and VEGFC are predominantly 
non-covalently bound [9, 21, 28, 29].

Expression and non‑neuronal functions 
of the VEGF family
The VEGF family is integral to vascular and lymphatic 
systems. VEGFA, expressed early in development in 
embryonic and extra-embryonic structures, regulates 
developmental vasculogenesis and angiogenesis with het-
erozygous loss resulting in embryonic lethality [30–34]. 
VEGFA expression decreases in adulthood but persists in 
almost every tissue and cell types including endothelial 
cells, pericytes, smooth muscle cells, cardiac and skeletal 
myocytes, epithelial cells, neurons, astrocytes, Schwann 
cells and microglia [35–43]. In adulthood, VEGFA mod-
ulates angiogenesis and vascular permeability while 
contributing to various physiological processes. These 
include vascular functions like vessel maintenance and 
wound healing, as well as non-vascular processes such as 
bone formation, hematopoiesis, lymphangiogenesis, and 
multiple functions in the female reproductive system [36, 
44–53].

PlGF is broadly expressed in various tissues, includ-
ing the brain, with high expression in the placenta dur-
ing embryonic development [39, 54, 55]. VEGFB is found 
in the brain, spinal cord, heart, and skeletal muscle and 
is controversial for its direct angiogenesis inducer role 
[37–39, 56–64]. It primarily serves as a factor for cell 
survival and may have cardioprotective and anti-angio-
genic effects [62–65]. Unlike VEGFA, VEGFB and PlGF 
are redundant for normal development and VEGFB- or 
PlGF-deficient mice only develop mild phenotypes [66, 
67]. VEGFC and VEGFD also participate in angiogenesis, 
but their primary function is the regulation of lymphang-
iogenesis [68–70]. VEGFC, expressed during embryogen-
esis in lymph sacs and vessel sprouting regions, is critical 
for lymphatic system development with its absence being 
embryonically lethal [71, 72]. Its expression in adulthood, 
including heart, placenta, muscle, ovary, and small intes-
tine, supports lymphatic maintenance and tissue repair 

[6, 39]. VEGFD, broadly expressed both during develop-
ment and adulthood across tissues, including the heart, 
lungs, liver, skeletal muscle, colon, small intestine, skin, 
and brain, enhances lymphangiogenesis and angiogen-
esis but is nonessential for development while retaining 
the capacity to induce lymphatics growth when overex-
pressed [8, 21, 39, 73–80]. Notably, VEGFC and VEGFD 
exhibit distinct expression profiles in the brain; VEGFC 
expression is stronger during development in neural 
stem cells and decreases in the postnatal period where 
it is then primarily expressed by reactive astrocytes and 
microglia [81–84]. On the contrary, VEGFD is expressed 
throughout development and adulthood especially in 
hippocampus and cortex [75–78].

VEGF family signaling
Although intracellular functions of VEGFs have been 
reported [85, 86], VEGFs primarily signal, after being 
secreted, by interacting with their cognate VEGF recep-
tors (VEGFRs) (Fig.  1). VEGFRs are receptor tyrosine 
kinases (RTKs), and three types are known: VEGFR1 
[also referred to as fms-like tyrosine kinase 1 (flt1)], 
VEGFR2 [also referred to as kinase insert domain-con-
taining receptor (kdr), or fetal liver kinase 1 (flk1)] and 
VEGFR3 [also referred to as fms-like tyrosine kinase 4 
(flt4)]. In addition to VEGFRs, secreted VEGFs can also 
interact with extracellular matrix (ECM) components, 
neuropilin-1 (NRP-1) and neuropilin-2 (NRP-2) co-
receptors, and heparan sulfate proteoglycans (HSPG) 
[85–88]. They can either bind alone or in combination 
with VEGFR to modulate downstream signaling [87, 88] 
(Fig. 1). HSPGs and the ECM also control VEGFs avail-
ability or present VEGFs to their appropriate receptor, 
which affects VEGF-VEGFR binding and the subsequent 
downstream signaling cascades [87, 88]. For instance, 
HSPGs expressed on neighboring cells can present 
VEGFA to VEGFR2 [89].

The particular VEGF subtype, splice variant, and degree 
of proteolytic processing all affect how well VEGFs bind 
to their receptors, co-receptors, and ECM [1, 18, 19, 21, 
27, 90–93]. The same VEGFR can bind to more than one 
VEGF. VEGFA interacts with VEGFR1, VEGFR2, and 
VEGFR1-VEGFR2 heterodimers while VEGFB and PlGF 
bind to VEGFR1; VEGFE binds to VEGFR2; and VEGFF 
interacts with both VEGFR1 and VEGFR2. The mature, 
proteolytically cleaved forms of VEGFC and VEGFD 
have a higher affinity for VEGFR3 but can also engage 
VEGFR2 or VEGFR2-VEGFR3 heterodimers [19, 21, 94, 
95] (Fig. 1). Interestingly, species-specific binding differ-
ences, such as VEGFD’s exclusive VEGFR3 interaction in 
mice, underscore the complexity of VEGFs signaling [96]. 
The species-specific interaction derives from differences 
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in VEGFD amino acid sequence at the binding surface 
rather than from differences in VEGFR2 [26].

Ligand binding induces the dimerization of VEG-
FRs to homo- or heterodimers, followed by activation 
of the receptors through autophosphorylation [87, 97]. 
Once activated, the tyrosine kinase domains trans-
phosphorylate specific tyrosine residues on the cyto-
plasmic regions of the opposing receptor in the dimer. 

This trans-phosphorylation not only regulates the kinase 
activity but also modulates the receptor’s ability to inter-
act with downstream signaling molecules, effectively 
linking receptor activation to intracellular signaling cas-
cades [87, 94, 97]. The specific VEGFR subtype and ligand 
determine tyrosine phosphorylation patterns. These pat-
terns are modified by interactions with accessory pro-
teins, co-receptors, and ECM, leading to activation of 

Fig. 1  Structure and receptor specificity of VEGFs. Schema illustrating domain structures and binding affinities of VEGFs to their cognate VEGF 
receptors. The VEGF homology domain (VHD), which contains the cystine knot motif and VEGFR-binding sites, is highly conserved across VEGFs. The 
C-terminal domains harbor neuropilin- and heparin-binding domains (NRP-BD and HBD). The N- and C-terminal propeptides of VEGFC and VEGFD 
are proteolytically removed during protein maturation. The signal peptide (SP) controls protein secretion. Alternative splicing at domains 
flanking the VHD can lead to additional isoforms with different properties and binding affinities. For a detailed overview of splice isoforms, see 
the following excellent reviews [266, 267]. Beyond primary receptor interactions, VEGFs and VEGFRs engage with co-receptors neuropilin-1 (NRP-1), 
neuropilin-2 (NRP-2), and heparan sulfate proteoglycans (HSPGs), which modulate downstream signaling. VEGFRs also associate with integrins 
and EphrinB2, further influencing VEGF-mediated signaling pathways. Created in BioRender. https://​BioRe​nder.​com/​01r617

https://BioRender.com/01r617
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distinct signaling pathways [87, 88, 98, 99]. In conclusion, 
VEGFs signaling’s complexity, driven by receptor-ligand 
and species-specific interactions with divergence of 
downstream pathways, underscores the future need for 
further detailed understanding of VEGFs biology in dif-
ferent cells and tissues.

VEGF family in disease
As key regulators of the cardiovascular and lymphatic 
systems, altered VEGFs signaling is linked to various 
disorders, particularly tumor pathogenesis. Pathologi-
cal aspects of deregulated VEGFs signaling have been 
extensively reviewed elsewhere and we invite the reader 
to a few excellent examples [32, 62, 63, 100–104]. In brief, 
VEGFA, central to vascular processes, is targeted in can-
cer and eye diseases through antibodies, decoy receptors, 
or inhibitors [32, 102, 105, 106]. Viral-based gene thera-
pies delivering anti-VEGFA antibodies or soluble recep-
tor forms are in clinical trials for ocular diseases [107, 
108]. VEGFB’s cardioprotective properties make it prom-
ising for heart disease therapies, while PlGF inhibition 
shows potential in pathological angiogenesis [63, 104, 
109]. VEGFC and VEGFD contribute to tumor angiogen-
esis, lymphangiogenesis, metastasis and ocular disorders, 
with therapeutic strategies under development [100, 101, 
103]. Abnormal VEGFD levels serve as diagnostic mark-
ers in lymphangioleiomyomatosis and are associated 
with pulmonary conditions [100, 110]. VEGFD delivery 
strategies are being explored for lymphatic and vascu-
lar diseases [100]; including gene therapy for refractory 
angina in clinical trials [111]. While VEGFs show thera-
peutic promise, a deeper understanding of their specific 
roles in disease is crucial for developing precise medical 
treatments. Several knowledge gaps persist, particularly 
regarding off-target effects and how VEGFs functions 
vary across different cells, tissues, and disease states. A 
prime example is VEGFC, which influences both blood 
and lymphatic vessel formation, making its therapeu-
tic application complex—beneficial for tissue repair but 
potentially problematic in cancer treatment. Moreover, 
as will be discussed in the remaining sections of this 
review, VEGFs also play multiple roles in neural cell func-
tion, adding another layer of complexity to their poten-
tial therapeutic use. To maximize their medical potential, 
researchers must focus on mapping out VEGFs signaling 
networks and their effects in specific biological contexts, 
both healthy and diseased.

Relevance of VEGFs in neuronal contexts
While the impacts of VEGFs on the vascular system are 
extensive and thoroughly documented, VEGFs also play a 
role in the nervous system, which is also reflected by the 
neuronal expression of their receptors. VEGFR2 is widely 

expressed across diverse neuronal populations through-
out development and adulthood, with particularly well-
documented expression in the subventricular zone 
(SVZ), hippocampal CA3, cerebellum, cortex and dorsal 
root ganglia (DRG) [112–126]. Importantly, VEGFR2 
localizes to sites essential for neuronal function, includ-
ing axonal branching points, axonal growth cones, den-
drites, and postsynaptic densities [116, 125–128]. Beyond 
neurons, VEGFR2 is also expressed in astrocytes [127]. 
The VEGFR2 co-receptor, NRP-1, shares a partially over-
lapping expression pattern, with specific localization to 
axons and growth cones [116, 122, 125, 127, 129–132]. In 
contrast, VEGFR1 is predominantly expressed in astro-
cytes of the adult mouse brain, whereas its expression 
is generally absent or low in developing neurons of the 
SVZ, hippocampus, cortex, retina and in the peripheral 
nervous system (PNS), with expression further declin-
ing in adulthood [114, 117, 118, 120, 125, 130, 132–135]. 
However, VEGFR1 expression can be induced by VEGFA 
[118]. VEGFR3, in turn, is expressed in neural progeni-
tors and stem cells in the SVZ and subgranular zone 
(SGZ) throughout development and adulthood. It is also 
present in postmitotic neurons and astrocytes across 
multiple brain regions, including the hippocampus, cor-
tex, and cerebellum, from early development into adult-
hood [81, 124, 136–140].

This review will next critically examine the nuanced 
roles of the VEGF family in neuronal contexts, including 
development, neuroprotection, and synaptic functions. 
Significant focus is directed towards the modulation 
of neuronal structure – including axons, dendrites, and 
spines – a subject that sparked increasing interest yet has 
not been comprehensively reviewed.

Neurogenesis and neuronal migration: role 
of VEGFs
Neurons obtain essential nutrients and oxygen from 
the bloodstream, a process made possible by the intri-
cate connection between nerves and blood vessels. This 
close relationship allows these systems to mutually influ-
ence each other’s growth [141]. VEGFs lie at the core 
of this bidirectional neurovascular communication as, 
for instance, newly formed vessels, induced by VEGFA, 
release growth factors to regulate neurons, which in turn 
secrete VEGFA to guide blood vessel growth [141–143]. 
This interdependence phenomenon between neuronal 
and vascular components is particularly evident dur-
ing neurogenesis, the formation of new neurons from 
neuronal stem cells (NSC; Fig. 2, Table 1) [144]. Despite 
ongoing debate regarding its role in the human brain, 
neurogenesis continues to take place in the rodent 
adult brain in the SVZ and the SGZ of the hippocampal 
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dentate gyrus, where NSCs and blood vessels are closely 
associated and grow in a coordinated manner [145–150]. 

Several studies have shown that VEGFA plays a crucial 
role in adult neurogenesis, which have been extensively 
reviewed elsewhere [43, 151–153]. In brief, VEGFA is 
essential for neurogenesis in adult rodents induced by 
exercise, learning, anti-depressants, electroconvulsive 
seizures, and environmental enrichment. It can also 
enhance recovery following brain injury or ischemia by 
promoting neurogenesis [154–161]. Both chronic stress 
and aging reduce VEGFA expression, which correlates 
with decreased neurogenesis [162, 163]. However, the 
molecular mechanisms underlying its effects remain 

incompletely understood, particularly in distinguishing 
its vascular-dependent and independent roles via a direct 
effect on VEGFR2-expressing neuronal precursors [123, 
164].

VEGFB also promotes neurogenesis but exhibits dis-
tinct mechanisms [165]. VEGFB’s effects are mediated 
through VEGFR1 and NRP-1, with a lesser extent of 
neurogenesis in vivo compared to VEGFA, raising ques-
tions about the differential roles of VEGFR1 and VEGFR2 
activation in neurogenic processes [5, 123, 165–167]. 
Interestingly, activation of VEGFR1 through PlGF 
reduces hippocampal neurogenesis and VEGFA-VEGFR1 

Fig. 2  VEGFs regulate a broad range of neuronal functions. VEGFs play critical roles in neurogenesis, neuronal migration, neuroprotection, 
and synaptic function. This schema highlights the specific VEGFs involved in each neuronal function. Note that the assignment of a VEGF 
to a particular role in the schema does not indicate a strictly promotive role; VEGFs may also have inhibitory effects, which are not distinguished 
here for simplicity. Refer to the main text for detailed descriptions of VEGF functions. Created in BioRender. https://​BioRe​nder.​com/​w52v0​06

https://BioRender.com/w52v006
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Table 1  Overview of the effects of VEGFs in neurons

Upward arrows (↑) represent a VEGF family-induced upregulation or requirement for the process. Downward arrows (↓) indicate downregulation or suppression

VEGFA PlGF VEGFB VEGFC VEGFD

Neurogenesis ↑
VEGFR2 [123, 154–161]

↓
VEGFR1 [154]

↑
VEGFR1 [123, 165, 167]

↑
VEGFR3 [81, 137, 138, 
168]

↑
[169, 170]

Neuronal migration ↑
VEGFR2, NRP-1 [112, 
120, 121, 129, 173, 174]

Neuroprotection ↑
VEGFR2, NRP-1 [41, 
122, 131, 167, 175–194] 
no effect [139]

↑
[195–197] no effect 
[122]
↓
[198]

↑
VEGFR1 [60, 132, 134, 
135, 199–207]

↑
[208] no effect [139]

↑
[139, 211]

Synaptic functions ↑
VEGFR2 [114, 119, 128, 
194, 213–216, 219, 221, 
222, 224]
↓
[217, 218, 223]

↑
[227]

↑
[76, 225, 226]

Axon morphology

 Growth cone organi-
zation

↑
VEGFR2, NRP-1 [116, 
130]

↑
NRP-1 [130]

no effect [130]

 Growth cone guid-
ance and turning

↑
VEGFR2, NRP-1 [113, 
234]

no effect [113]

 Neurite outgrowth ↑
VEGFR2, NRP-1 [115, 
117, 118, 231–234] 
no effect [113]

no effect
[117]

↑
VEGFR1 [199] no effect 
[117]

 Axon or neurite 
elongation

↑
VEGFR2 [125, 132]

↑
NRP-1 [132, 236]

↑
VEGFR1, NRP-1 [132]

no effect [125] ↑
[125]

 Axon or neurite 
branching

↑
VEGFR2 [125, 132]

↑
VEGFR1, NRP-1 [132]

no effect [125] no effect [125]

Dendrites and synapses

 Developmental 
dendritogenesis

↑
VEGFR2
[118, 126, 237–239] 
no effect [238]

 Adult dendrite 
remodeling

no effect[237, 239] ↓
VEGFR3 [124]
↑
VEGFR3 (PNS) [242]

 Dendrite elongation ↓
VEGFR3 [124]

 Dendrite branching ↑
VEGFR2 [126, 237]

↑
VEGFR3 [242]

↓
VEGFR3 [124]
↑
VEGFR3 (PNS) [242]

 Dendrite mainte-
nance

no effect [76, 124, 139, 
211]

no effect [76, 124, 139, 
211, 257]

↑
VEGFR3 [76, 124, 139, 
211, 225, 226, 242, 251, 
257]

 Spinogenesis (devel-
opmental)

↑
VEGFR2 [126, 215, 237]

 Spinogenesis (adult) ↑
[240, 241]
↓
[237]

no effect [76, 124, 226]
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signaling in glia cells somehow exerts a negative effect on 
adult olfactory neurogenesis in mice [133, 154].

VEGFC also can promote both developmental and 
adult neurogenesis. VEGFC, differently than VEGFA, 
VEGFB and PIGF, primarily exerts its neurogenic prop-
erties via VEGFR3 in what appears to be a conserved 
mechanism. Downstream of VEGFR3, VEGFC acti-
vates extracellular signal-regulated protein kinase (ERK) 
and Akt pathways, driving cell proliferation in human 
embryonic stem cell models [81, 137, 138]. Several stud-
ies indicate that VEGFC-induced neurogenesis is a 
direct effect on neurons rather than vessel-mediated, 
as VEGFC did not induce angiogenesis in the brain, 
and conditional deletion or inactivation of VEGFR3 in 
NSCs interfered with neurogenesis [81, 137, 138]. Nota-
bly, VEGFR3 knockout-mediated disruption of neu-
rogenesis correlated with heightened fear responses. 
This finding emphasizes the role of VEGFC-VEGFR3 
signaling in behavior-associated neurogenesis and indi-
cates its potential as a therapeutic agent for psychiatric 
and neurodegenerative disorders [138]. Indeed, inject-
ing microbeads that contain NSCs in combination with 
VEGFC-secreting endothelial cells into the mouse brain 
promoted NSC proliferation and was beneficial against 
hemorrhagic stroke in the mouse brain [168].

VEGFD, though less studied, has also been associated 
to the induction of adult hippocampal neurogenesis and 
improvements in spatial learning and memory in mice 
[169]. Moreover, VEGFD also induces the differentia-
tion of human embryonic stem cells into dopaminergic 
neurons in vitro, positioning it as a candidate for further 
exploration in regenerative therapies [170].

During development but also in adulthood, new-
born neuroblasts migrate from their birthplace to their 
intended destination [171]. Much like its role in direct-
ing the movement of endothelial cells, VEGFA has been 
identified as a chemoattractant that guides neuronal 
migration through distinct molecular mechanisms across 
developmental stages and brain regions (Fig. 2, Table 1)
[1, 43, 151–153, 172, 173]. During embryonic develop-
ment, VEGFA interacts with NRP-1 to guide cranial 
neural crest migration from the neural tube to specific 
branchial arches in the chick embryo and the facial bran-
chiomotor neurons in the developing mouse hindbrain 
[112, 129, 174]. In postnatal development, VEGFA guides 
migration through neuronal VEGFR2-dependent mecha-
nisms. For example, in the cerebellum, VEGFA-activated 
VEGFR2 forms complexes with N-methyl-D-aspartate 
receptor (NMDAR) subunits, activating Src family 
kinases that phosphorylate the NMDAR subunit GluN2B, 
ultimately enhancing NMDAR-mediated currents and 
Ca2+ influx [121]. In rat SVZ cultures and explants, 
VEGFA directs the migration of Fibroblast Growth 

Factor 2 (FGF-2)-stimulated neuronal progenitor cells 
also through neuronal VEGFR2 [120]. Both VEGFR2-
dependent processes require specific ECM-bound 
VEGFA splice isoforms—VEGF164 and VEGF188—
to generate essential concentration gradients. Soluble 
VEGF120, in contrast, fails to accomplish this [120, 121]. 
Meanwhile, glia-expressed VEGFR1—which also had 
negative effects on neurogenesis itself—acts as a coun-
terbalance, restraining neuronal progenitor migration 
along the rostral migratory stream [133]. Despite impor-
tant advances, unresolved questions remain regarding 
the spatiotemporal dynamics of VEGFs in neurogenesis 
and neuronal migration. Understanding how the different 
VEGFs signaling elements integrate with other molecular 
pathways previously linked to such phenomena [i.e. Wnt, 
Notch, Epidermal growth factor (EGF)] could provide 
deeper insights. Moreover, valuable input may derive 
from an expansion of experimental work addressing the 
functional consequences of VEGFs-regulated neurogene-
sis on different behavioral aspects such as anxiety, fear, or 
learning. Importantly, the currently available information 
is largely based on animal models and future work should 
aim at defining the role of VEGFs in human neurogenesis 
as this will be critical to eventual translation of findings 
into clinical contexts.

VEGFs in synaptic functions
In the last years, it has also become clear that VEGFs 
modulate neuronal synaptic functions both at the pre- 
and post-synaptic side (Fig. 2, Table 1).

For instance, VEGFA plays a critical role in synaptic 
excitability, transmission, and plasticity [152, 153, 213, 
214]. VEGFA, independent of neurogenesis or angiogen-
esis, enhances synaptic strength and plasticity through 
VEGFR2 signaling and blocking VEGFA reduces certain 
properties of action potentials in CA1 pyramidal neurons 
[128, 215]. More precisely, VEGFA enhances NMDAR-
mediated excitatory postsynaptic currents (EPSCs) and 
the frequency of miniature EPSCs (mEPSCs), indicative 
of increased presynaptic neurotransmitter release, in 
hippocampal cultures and slices [128]. VEGFA also pro-
motes long-term potentiation (LTP) thereby regulating 
hippocampal-dependent memory [114, 128, 215, 216]. 
These findings underscore VEGFA’s role in synaptic plas-
ticity and memory regulation. Paradoxically, in certain 
contexts, VEGFA also exhibits inhibitory effects on syn-
aptic transmission. It reduces amplitude and frequency 
of field excitatory and inhibitory postsynaptic potentials 
(EPSPs and IPSPs) in hippocampal and motor neurons 
but does not alter motor neuron firing properties in 
brainstem slices [217, 218]. Conversely, in spinal motor 
neurons, VEGFA induces phrenic motor facilitation, 
enhancing nerve burst frequency and amplitude [219]. 
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These contradictory findings may reflect differences 
in the used experimental models, neuronal cell types, 
VEGFA dosages, or interactions with other signaling 
pathways, such as Notch1 [220].

The mechanisms underlying VEGFA’s influence on 
synaptic functions remain only partially understood but 
have been shown to involve the modulation of ion chan-
nels, including voltage-gated Na+ channels (L-VACC), 
delayed-rectifying K+ channels, and high-voltage-
activated Ca2+ channels [114, 194, 221, 222]. Through 
VEGFR2, VEGFA increases intracellular Ca2+ levels, 
likely via Ca2+ influx through L-VACCs, NMDARs, and 
voltage-independent transient receptor potential canoni-
cal channels, and release from internal stores through 
PLCγ-IP3 (phospholipase Cγ-inositol 1,4,5-triphosphate) 
pathway activation [114]. For instance, VEGFA enhances 
NMDAR-mediated currents by facilitating the interaction 
between VEGFR2 and the GluN2B subunit of NMDARs 
in cerebellar granule cells, which triggers SFK-dependent 
GluN2B phosphorylation and increases Ca2+ influx [119]. 
Additionally, the co-application of VEGFA and NMDA 
promotes the recruitment of GluN2B to postsynaptic 
sites, thereby enhancing NMDAR-induced currents and 
driving coordinated remodeling of both NMDARs and 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
receptors (AMPARs) in hippocampal neurons [128]. This 
remodeling activates downstream signaling pathways, 
such as calcium–calmodulin-activated kinase (CaMKII) 
and protein kinase C (PKC) signaling [128]. Furthermore, 
VEGFA upregulates the expression of AMPAR subunit 
GluR2, which reduces the Ca2+ permeability of AMPARs 
[223]. VEGFA-induced synaptic plasticity may also 
involve structural changes, including alterations in spine 
and dendrite density and morphology [128, 214, 215].

Interestingly, VEGFA expression is activity-dependent, 
linking it to synaptic activity both as a regulator and a 
consequence. Membrane depolarization, Ca2+ influx, 
and seizure-induced activity increase VEGFA levels, a 
process that depends on the activation of NMDAR or 
L-type voltage-gated channels [114, 179, 217]. Addition-
ally, Hypoxia-Inducible Factor-1α also stimulates VEGFA 
expression, thereby enhancing excitatory synaptic trans-
mission [224]. Elevated VEGFA levels may not only play 
a crucial role in modulating synaptic functions but also 
act as a feedback regulatory mechanism during periods 
of heightened activity. For instance, the upregulation of 
VEGFA following seizures may function to limit excit-
ability [217].

VEGFD is crucial for maintaining dendrite morphol-
ogy and, consequently, for supporting network activity. 
Loss of VEGFD results in the simplification of basal den-
drites in pyramidal cells in vitro and in vivo and impairs 
the formation of hippocampus-dependent spatial and 

contextual fear memories [76, 225, 226]. The reduction in 
dendritic complexity and, consequently, in plasma mem-
brane surface area leads to impaired activity-dependent 
nuclear calcium signaling and diminished network activ-
ity as measured by reduced spike frequencies, neuronal 
excitability, and membrane capacitance in vitro [76, 225]. 
Resting or threshold membrane potentials are, however, 
not affected [76]. Additionally, measurements of mEPSCs 
and responses to bath-applied AMPA indicate fewer 
AMPAR-containing synapses, fewer AMPARs within 
those synapses and a total reduction of AMPARs [76]. 
Surprisingly, VEGFD knockdown in  vivo, despite caus-
ing memory deficits, does not alter intrinsic electrical 
properties of hippocampal CA1 neurons as membrane 
capacitance, action potentials, and accommodation were 
unaffected [225, 226]. Likewise, no changes are detected 
in local field potentials, cross-frequency phase-amplitude 
coupling of theta and gamma oscillations and sharp-
wave ripples [226]. This discrepancy may be attributed 
to VEGFD’s region-specific effects, as VEGFD knock-
down reduces the length and complexity of basal den-
drites, while apical dendrites exhibit increased length 
and complexity [226]. VEGFD further prevents synaptic 
activity-induced dendritic remodeling without impairing 
neuronal activity [124].

While VEGFA and VEGFD emerged as crucial for syn-
aptic function, little is known about the role other VEGF 
family members. Nevertheless, VEGFB was shown to 
restore alterations in firing and synaptic input caused 
by axotomy in motor neurons [227]. Moreover, a recent 
study suggests a potential role for VEGFC in inhibitory 
and interneuron activity, as its overexpression upregu-
lated the transcription of calcium signaling regulatory 
genes in these neurons [209].

In summary, VEGFs are increasingly recognized as 
key modulators of synaptic functions. VEGFA, the most 
extensively studied, has complex dual roles in both 
enhancing synaptic plasticity and excitability while inhib-
iting them in certain contexts, underscoring the need 
for further research to harness its therapeutic potential. 
VEGFD is crucial for maintaining dendritic morphology 
and network activity, though its region-specific effects 
highlight the importance of understanding its mecha-
nisms and sites of action. Research on other VEGF family 
members remains limited, but their potential therapeu-
tic applications in neurology demand further investiga-
tions to fully explore their benefits and expand treatment 
options.

Functions of VEGFs in neuronal morphology
The polarized shape of neurons enables signal transmis-
sion and reception. A single long projection, the axon, 
transmits impulses to other neurons, while shorter, 
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highly branched dendrites receive and process incom-
ing signals [228]. Synaptic communication occurs at the 
junction between axons and dendrites, with excitatory 
synapses typically located on small protrusions from 
dendrites known as dendritic spines [229]. Traditionally 
viewed through a vascular lens, VEGFs now emerge as 
essential modulators of neuronal architecture affecting 
axons, dendrites, and spines (Fig. 3, Table 1).

Axon growth and guidance
VEGFs play pivotal roles in axonal guidance and growth, 
with VEGFA as the most extensively studied mem-
ber of the family in this context. Axonal growth cones, 
a dynamic structure at the tip of developing axons, 
share striking structural and functional similarities 
with endothelial tip cells at the leading edge of vascu-
lar sprouts [230]. Similar to its role in guiding endothe-
lial tip cells, VEGFA promotes axonal growth, guidance, 

and the outgrowth of neuronal processes, also known as 
neurites, in a variety of neuronal systems [153, 172]. For 
instance, VEGFA promotes neurite outgrowth in axoto-
mized postnatal retinal RGCs, embryonic glial-reduced 
ventral mesencephalic neuronal cultures, and explants 
of adult mouse superior cervical ganglia (SCG) or DRG 
[231–233]. While the mitogenic effects of VEGFA on 
Schwann cells may indirectly support neurite outgrowth 
in SCG and DRG models [233], compelling evidence 
suggests that VEGFA acts directly on neurons. Through 
VEGFR2, VEGFA stimulates neurite outgrowth in rat and 
mouse primary cortical neurons, independent of astro-
glial or angiogenic influences [115, 117, 118]. Key signal-
ing pathways such as Rho/ Rho-associated protein kinase 
(ROK) signaling, phosphorylation of the actin-regulatory 
protein cofilin and the MAPK and PI3K/Akt signaling 
pathways mediate this effect [115, 117, 118]. Moreover, 
VEGFA reorganizes actin cytoskeleton within the growth 

Fig. 3  Role of VEGFs in neuronal morphology. VEGFs regulate numerous aspects of neuronal morphology, including neurite outgrowth, 
growth cone organization, axonal guidance and turning, dendritogenesis, elongation and branching of neurites, axons, and dendrites, as well 
as spinogenesis. Through these mechanisms, VEGFs contribute to the development, regulation, and maintenance of neuronal structure. This 
schema shows the specific VEGFs involved in different morphological compartments of neurons. Note that the display of a VEGF in a particular 
compartment in the schema does not indicate a strictly promotive role; VEGFs may also have inhibitory effects, which are not distinguished here 
for simplicity. Refer to the main text for detailed descriptions of VEGF functions. Created in BioRender. https://​BioRe​nder.​com/​o56d5​88

https://BioRender.com/o56d588
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cones, increasing their area and motility via VEGFR2 
and NRP-1 in chicken DRG neurons [116]. Interestingly, 
VEGFR2 interacts with the NRP-1-PlexinD1 complex 
and is activated by Semaphorin 3E in embryonic mouse 
subicular neurons, promoting axon elongation indepen-
dently of VEGFA [127].

VEGFA’s role in axonal structure extends beyond pro-
moting outgrowth as it also plays a role in axonal guid-
ance. In the developing mouse spinal cord, VEGFA 
secreted by the floor plate acts as a chemoattract-
ant for commissural axons without influencing axonal 
outgrowth [113]. Disruption of VEGFA expression 
or VEGFR2 activity impairs axon guidance and turn-
ing, mediated by local activation of SFKs at the growth 
cones of commissural neurons [113]. Similarly, VEGFA 
influences optic chiasm crossing of commissural 
RGC axons through NRP-1 signaling [234]. Notably, 
VEGFA prevents growth cone collapse in developing rat 
DRG explants through NRP-1, even in the absence of 
VEGFR1- and 2 [130]. These observations highlight dis-
tinct receptor-ligand interactions underpinning VEGFA’s 
diverse roles in axon development. VEGFA-VEGFR2 also 
promotes elongation of axons and axonal branching, a 
critical process where axons extend filopodia that mature 
into new branches [235]. In cultured mouse hippocampal 
neurons, VEGFA stimulates axon branching by triggering 
internalization of VEGFR2, activating SFKs, and localiz-
ing to actin-rich locations along the axon that function 
as branching points [125]. This process occurs indepen-
dently of the co-receptors NRP-1 and EphrinB2. In con-
trast, dendritogenesis requires EphrinB2 for VEGFR2 
internalization and VEGFA-induced dendritic branching 
[125, 126]. VEGFR2’s essential role in stabilizing newly 
formed axon branches is evident, as its knockdown in the 
CA3 region of the mouse hippocampus, increases filopo-
dia formation but results in immature, shorter axons that 
fail to form functional synapses with CA1 neurons [125].

In summary, VEGFA directly promotes axonal growth 
cone organization, axon growth, guidance and branch-
ing through diverse mechanisms that vary across neu-
ronal systems depending on cell-type and context. While 
VEGFR2-mediated signaling predominates, regulating 
cytoskeletal dynamics and growth cone motility, other 
receptors, and co-receptors including NRP-1 and Plex-
inD1, and their interactions with additional ligands like 
Semaphorin 3E play critical roles. However, significant 
gaps still remain in understanding how VEGFA integrates 
with other guidance cues to shape neuronal networks. 
Further research should focus on defining the exact 
receptor-ligand interactions and downstream signaling 
pathways in diverse neuronal contexts in order to fully 
elucidate the therapeutic potential of VEGFA in neural 
regeneration and repair.

Other VEGF family members also exhibit axonal 
effects, albeit less extensively studied than VEGFA and 
in specific scenarios. For example, VEGFB or PlGF do 
not induce neurite outgrowth in mouse cortical neu-
rons, where their receptor VEGFR1 is not expressed 
[117]. On the other hand, a specific PlGF isoform 
(PlGF2) that binds to NRP-1, but not the VEGFR1-
specific PlGF1 isoform, prevents growth cone collapse 
of developing rat DRGs [130]. And induces neurite 
elongation in mouse trigeminal ganglia neurons [132]. 
Moreover, PlGF stimulates DRG neurite length exten-
sion in co-cultures of pancreatic ductal adenocar-
cinoma cell line and primary mouse DRGs. This, in 
turn, aids the invasion of cancer cells into nerves 
[236]. VEGFB seems more effective at increasing neu-
rite length than PlGF2. VEGFB stimulates neurite out-
growth in primary neurons from the rat cerebellum, 
hippocampus and retina [199]. Neutralizing VEGFR1 
abrogates this effect, indicating its critical role in medi-
ating VEGFB-driven neurite growth [199]. Additionally, 
VEGFB promotes neurite elongation and branching in 
trigeminal ganglia neurons in the PNS more robustly 
than VEGFA and independently of vascular influences 
[132]. VEGFB-induced neurite growth is mediated 
through VEGFR1, NRP-1, and the PI3K-Akt and Notch 
signaling pathways [132]. In a mouse corneal injury 
model where the subbasal corneal epithelial plexus 
is removed to injure superficial trigeminal nerve end-
ings, VEGFB plays a critical role in nerve regenera-
tion and functional recovery [132]. Notably, the study 
showed that VEGFB-induced nerve regeneration was 
highly specific, targeting only the injured nerves leav-
ing uninjured nerves unaffected. When VEGFB was 
administered, its effects were more localized in cases of 
small, localized injuries compared to larger injury areas 
[132]. Given the avascular nature of this model, indirect 
effects via the vasculature are fully excluded [132].

VEGFC and VEGFD, by contrast, exhibit limited roles 
on axon structure. VEGFC does not affect turning of 
commissural axons nor induces axon elongation and 
branching in hippocampal neurons [113, 125]. Distinctly 
different than VEGFA, VEGFD modestly increases axon 
length in developing hippocampal neurons, but does not 
promote branching or affect growth cone formation of 
developing DRGs [125, 130].

In conclusion, the currently available evidence posi-
tions VEGFA as the primary regulator of axonal develop-
ment, with VEGFB and PlGF contributing under certain 
conditions while VEGFC and VEGFD exhibit minimal 
influence (Fig.  3, Table  1). However, the findings also 
emphasize the need for further investigation into the 
less-explored VEGF family members. Such research 
could uncover novel roles for these factors in axonal 
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development and highlight their therapeutic potential in 
neural regeneration and repair.

Dendrites and synapses
VEGFA has been widely studied for its involvement in 
dendrite and spine morphology [153, 172]. It promotes 
dendritic arborization and spine morphogenesis, par-
ticularly during developmental stages. For instance, in 
cultured rat cortical neurons, VEGFA promotes the 
developmental outgrowth of neurites and their matu-
ration into dendrites through neuronal VEGFR2 and 
MAPK signaling [118]. On the other hand, sequester-
ing VEGFA in adult-born neurons, such as those in the 
mouse olfactory bulb, leads to reduction in dendrite 
arborization and spine density without affecting the vas-
culature or perfusion [237]. VEGFA inhibition through 
bevacizumab (an anti-VEGFA antibody) also reduces 
spine number and length and impairs synaptic plastic-
ity [215]. Intriguingly, while VEGFA supplementation 
increases total dendrite length in developing hippocam-
pal and cortical neurons, VEGFA inhibition through 
bevacizumab also initially increases total dendrite length 
but later reduces it in hippocampal neurons, while no 
such reduction occurs in cortical neurons, indicating 
time- and cell type-dependent effects [238]. In neona-
tal or early developmental stages, when neurons have 
few stem dendrites and dendritic spines, VEGFA sup-
plementation enhances dendritogenesis. In mature neu-
rons, VEGFA’s effects are less straightforward. Indeed, 
mature neurons, which already possess complex den-
dritic structures, do not show significant changes in den-
drite arborization following VEGFA treatment [76, 239]. 
Recently, it was shown that VEGFA promotes dendritic 
arborization, spine maturation, and synaptic plasticity 
in neurons of the CA3 region of the developing mouse 
hippocampus. This occurs by clustering of VEGFR2 and 
EphrinB2 complexes at postsynaptic sites, followed by 
endocytosis, which leads to activation of SFKs and Akt 
signaling pathways [126]. In contrast, conditional neu-
ron-specific knockout of VEGFR2 or EphrinB2, results in 
reduced dendrite arborization, decreased spine density, 
impaired synaptic plasticity and less mature spines, char-
acterized by smaller head size and an increased propor-
tion of immature filopodia [126]. Interestingly, blocking 
VEGFA does not affect established, mature dendrites, 
indicating that VEGFA is essential for dendritogenesis 
but not for dendrite maintenance [76, 237]. However, 
blocking VEGFA after neuronal maturation paradoxi-
cally promotes spine formation [237]. At the same time, 
environmental enrichment-induced increase in spine 
density in CA1 pyramidal neurons of the hippocampus 
relies on enhanced VEGFA expression and VEGFR2 sign-
aling [240]. VEGFA also offers neuroprotective effects, 

protecting mouse hippocampal neurons against spine 
loss, spine morphological alterations, and synaptic dys-
function when exposed to synthetic amyloid-β oligom-
ers [241]. In summary, VEGFA plays a crucial role in 
dendrite arborization, spine morphogenesis, and synap-
tic plasticity during neuronal development, but appears 
to be dispensable for the maintenance of mature den-
dritic structures (Fig. 3, Table 1). Its role in spines within 
mature neurons, however, remains ambiguous. While 
VEGFA may negatively regulate spine density under spe-
cific conditions, it enhances spine formation in response 
to environmental enrichment. Moreover, there are cell-
type or brain-region specific differences in VEGFA’s reg-
ulation of dendrite structure. These contrasting findings 
highlight the need for further investigation into VEGFA’s 
context-dependent effects to better elucidate its thera-
peutic potential.

The role of VEGFC in dendrite arborization and spine 
morphogenesis remains largely unexplored. However, 
it was shown that human induced pluripotent stem 
cells (hiPSCs), differentiated into NSCs and cultured 
long-term in the presence of a VEGFR3-specific mutant 
VEGFC, develop more complex dendritic trees while 
maintaining the same average dendrite length [242]. 
Moreover, chronic VEGFC exposure enables adaptive 
dendrite remodeling, conferring neuroprotection against 
neurotoxic stress both in developing and mature hiPSC-
NSCs [242]. In contrast, acute VEGFC treatment does 
not induce similar effects, suggesting that VEGFC’s ben-
efits may be time-dependent or require prolonged expo-
sure to exert effects on dendrite structure and neuronal 
resilience [242]. These findings suggest that VEGFC 
may offer a promising strategy for promoting dendritic 
remodeling and enhancing neuronal survival under 
stress. However, the lack of acute effects implies that its 
therapeutic application would require more nuanced 
delivery strategies, particularly in diseases characterized 
by both developmental and neurotoxic challenges.

In contrast to VEGFA and VEGFC, multiple evidence 
suggests that VEGFD may be crucial primarily for the 
maintenance and stability of dendrites in mature neu-
rons. Loss-of-function experiments indicate that knock-
down of VEGFD leads to simplified dendritic arbors of 
mature hippocampal neurons both in  vitro and in  vivo 
[76, 225, 226]. A similar, simplified, dendritic pheno-
type was achieved when VEGFR3 expression was tar-
geted supporting the notion that VEGFD signaling is 
essential for dendrite maintenance [76]. Indeed, reduc-
ing expression of VEGFA or VEGFC had no effect [76]. 
Interestingly, in  vivo studies show that VEGFD’s effects 
are region-specific: while length and complexity of basal 
dendrites in the CA1 region were reduced, apical den-
drites, which feature distinct branching patterns and 
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receive inputs from different layers, exhibited increased 
length and complexity upon reduction of VEGFD expres-
sion [226]. This regional variability could suggest that 
VEGFD signaling functions differently in different den-
dritic domains, that VEGFR3 is differentially localized or 
that compensatory mechanisms are at play [226]. Impair-
ments in hippocampus-dependent spatial and contextual 
fear memory formation result from the loss of VEGFD in 
the hippocampus and the subsequent simplification of 
dendritic architecture [76]. Memory deficits likely result 
from the loss of basal dendrites in CA1 pyramidal cells, 
which receive input from the CA2 region [226, 243]. 
This region also generates sharp wave-ripple complexes 
essential for long-term memory consolidation [244]. In 
several neurological conditions, dendritic structure pres-
ervation is frequently compromised [245–247]. In mouse 
models of stroke and retinal degeneration, VEGFD lev-
els decrease significantly, leading to dendritic loss, while 
VEGFD supplementation preserves dendritic structure 
and neuronal function [139, 211]. Notably, this protec-
tive effect is specific to VEGFD and does not extend to 
VEGFA or VEGFC [139, 211]. The preservation of den-
drites in response to VEGFD signaling was shown to be 
mediated through neuronal VEGFR3 expression [211]. 
Dysregulated expression of neuronal calcium buffers has 
been associated with Alzheimer’s disease (AD), schizo-
phrenia, and aging [248–250]. Elevating nuclear calcium 
buffering capacity by expressing a nuclear targeted form 
of the calcium buffer protein parvalbumin in mature hip-
pocampal neurons reduces VEGFD expression, leading to 
decreased dendrite complexity [251]. Notably, these defi-
cits can be reversed through administration of recombi-
nant VEGFD [251]. Similarly, the nuclear accumulation 
of Histone Deacetylase 4 (HDAC4), an epigenetic regu-
lator implicated in several neurodegenerative disorders—
including stroke, PD, AD, and ataxia telangiectasia—also 
disrupts dendrite architecture of mature neurons by neg-
atively affecting VEGFD expression [252–257]. The loss 
of dendrites caused by nuclear HDAC4 can be minimized 
by overexpressing VEGFD or treating with recombinant 
VEGFD, but not its homolog VEGFC [257].

While preserving established connections in mature 
neurons is vital, dendritic structural plasticity is crucial 
to development and adult cognitive functions [258–261]. 
During dendritogenesis, VEGFD levels are low, suggest-
ing that VEGFD’s role in maintaining dendritic structure 
may be unnecessary—or even counterproductive—dur-
ing dendrite development [76]. In adult neurons, den-
drite remodeling signals, such as synaptic activity or fear 
memory formation, downregulate VEGFD expression in 
the hippocampus both in  vitro and in  vivo [124]. How-
ever, unlike the abrupt loss of VEGFD brought on by 
toxic stimuli, activity-induced VEGFD downregulation 

happens gradually and in a controlled manner during 
remodeling. Interestingly, dendritic structural remod-
eling requires VEGFD downregulation, as overexpression 
or supplementation of VEGFD—by activating VEGFR3—
prevents remodeling [124]. Other members of the VEGF 
family, such as VEGFA or VEGFC, do not influence activ-
ity-dependent structural plasticity. VEGFD appears to 
maintain dendritic structure in a homeostatic manner by 
preventing dendrite elongation and destabilizing newly 
formed dendrites [124]. Blocking VEGFD downregula-
tion during fear memory-induced dendritic remodeling 
intriguingly enhances spatial memory, suggesting that 
VEGFD downregulation may act as a mechanism for 
limiting memory formation [124]. Memory suppression 
is increasingly recognized as a biological necessity to 
regulate and limit memory formation [262]. In the PNS, 
VEGFD-VEGFR3 signaling reorganizes dendritic struc-
ture in neurons that innervate subcutaneous adipose 
tissue and protects them against structural remodeling 
induced by neurotoxicity [242].

This dendritic maintenance partially relies on p38 
MAPK signaling activation by VEGFD-VEGFR3 [76]. 
VEGFD signaling also activates ERK1/2 and cAMP 
response element-binding protein (CREB), but does not 
affect the phosphorylation of MSK1 (mitogen stress-
activated kinase 1), ATF2 (Activating transcription factor 
2), Akt, MKK4 (Mitogen-activated protein kinase kinase 
4), JNK (c-Jun N-terminal kinase), p70, CaMKII, GSKα/β 
(Glycogen synthase kinase 3 α/β) [76]. Although SFKs 
play a role in VEGFA-VEGFR2 signaling for dendrite 
and axon development and in VEGFC-VEGFR3 signal-
ing in lung adenocarcinoma cells, they are not involved in 
VEGFD-VEGFR3-mediated stabilization of mature den-
drites [124–126, 263]. VEGFD controls dendritic mor-
phology by influencing the cytoskeleton. It activates via 
dephosphorylation the striatal-enriched protein tyrosine 
phosphatase (STEP), possibly via the phosphatase cal-
cineurin, which in turn controls the phosphorylation of 
the cytoskeleton-regulatory protein ezrin [124]. Addi-
tionally, VEGFD signaling slows microtubule dynamics in 
dendrites and enhances cell stiffness, further contribut-
ing to its role in maintaining dendritic stability [124, 264].
VEGFD, however, does not influence spine density or 
shape [76, 226] nor does it modulate actin spine dynam-
ics [124]. This suggests that VEGFD’s role is confined to 
dendritic structure, not spine plasticity.

To date, there is limited evidence regarding the roles of 
VEGFB and PIGF in dendrite and spine morphogenesis. 
While these factors are known to influence neurite exten-
sion (see previous section)—an early stage in the forma-
tion of dendrites and axons—it remains unclear whether 
they regulate dendritic structure directly. Given their 
potential role in neurite dynamics, further research is 
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needed to investigate their effects on dendritic morphol-
ogy and their possible involvement in dendritic develop-
ment or maintenance.

The contrasting roles of VEGFA, VEGFC, and VEGFD 
in dendritic and spine dynamics create a complex picture 
of VEGFs signaling in the regulation of neuronal struc-
ture. While VEGFA plays a dominant role in dendritic 
growth and spine formation during early development, 
its influence on mature neurons is quite specific to dif-
ferent scenarios and may vary based on environmen-
tal factors, such as enrichment or synaptic activity. In 
contrast, VEGFD is primarily involved in maintaining 
dendrite integrity in mature neurons and providing pro-
tection to dendrites, and thus, neurons, against neuro-
toxic stress but does not regulate spine formation (Fig. 3, 
Table  1). Taken together, these divergent roles suggest 
that VEGFA, VEGFD, and VEGFC are thus likely to func-
tion in a complementary manner during different stages 
of dendrite development, with VEGFA and VEGFC pro-
moting growth and remodeling, and VEGFD ensuring 
maturity and stability. Further studies are required to 
elucidate these complexities and may lead to a clearer 
picture.

Neuroprotection and VEGFs: a therapeutic promise
The potential neuroprotective effects of VEGFs extend 
across diverse neurological conditions, presenting an 
exciting avenue for therapeutic development. Members 
of the VEGF family have demonstrated intriguing neu-
roprotective capabilities in several disease models, with 
both direct and indirect mechanisms implicated.

VEGFA is the most extensively studied member of 
the VEGF family in neuroprotection (Fig.  2, Table  1). 
VEGFA showed neuroprotective and neuroregenerative 
effects in animal models of epilepsy, cerebral ischemia, 
brain injury, peripheral nerve injury, and neurodegen-
eration [167, 172, 175–185]. While some of these effects 
can be attributed to VEGFA’s angiogenic and neurogenic 
properties, a growing body of evidence highlights direct 
neuroprotective mechanisms [153]. For instance, stud-
ies have shown that VEGFA directly protects cultured 
neurons from toxic stimuli, including excitotoxicity, 
hypoxia, and serum withdrawal, through a process that 
requires neuronal expression of VEGFR2 [122, 186–188]. 
Similarly, VEGFA promotes the survival of migrat-
ing neuroendocrine cells through neuronal- and not 
endothelial-expressed NRP-1 [131]. Remarkably, VEGFA 
administered at neuroprotective doses in an amyotrophic 
lateral sclerosis (ALS) rat model preserved motor neu-
rons without significant vascular effects [189]. In the 
ischemic brain, VEGFA-mediated neuroprotective effects 
preceded any signs of angiogenesis or neurogenesis, 
and in traumatic brain injury models, VEGFA reduced 

hippocampal neuronal apoptosis without influencing 
neuronal proliferation [167, 176]. The molecular mecha-
nisms underlying VEGFA-mediated neuroprotection 
are not fully understood, but involve phosphoinositide 
3-kinase (PI3K)/Akt and mitogen-activated protein 
kinase (MAPK) pathways, phosphorylation of the volt-
age-gated potassium channel Kv1.2, as well as reduction 
of ischemia-induced Ca2+ influx through inhibition of 
voltage-gated channels [41, 186–188, 190–194].

PlGF’s role in neuroprotection is more controversial as 
it appears to be more complex and context-dependent. 
On one hand, PlGF induces angiogenesis, reduces apop-
tosis and infarct volume, improves behavioral perfor-
mance in a rat stroke model and protects mitochondrial 
function in cultured neurons after oxygen–glucose dep-
rivation [195, 196]. PlGF, partially through activation of 
MEK and PI3K pathways and suppression of caspases, 
also promotes survival of retinal neurons in response to 
oxygen–glucose deprivation or light irradiation in  vitro 
[197]. On the other hand, PlGF failed to protect cultured 
cortical neurons from ischemic death [122]. Further, in 
an in vivo mouse model of light-induced retinal damage, 
PlGF exacerbated neuronal death by promoting blood–
retinal barrier breakdown, and anti-PlGF antibody treat-
ments were protective [198]. In sum, these contradictory 
findings underscore the need for targeted investigations 
to resolve the dual roles of PlGF and define its therapeu-
tic applicability.

VEGFB is emerging as a potent neuroprotective fac-
tor with direct effects on neurons. It promotes survival 
of several cell types in response to toxic stimuli such 
as cultured DRG, retinal, hippocampal, and trigeminal 
ganglia neurons [132, 134, 135, 199, 200]. VEGFB also 
has neuroprotective effects in several pathological con-
ditions, including cerebral ischemia and neurodegener-
ation, which have been recently reviewed [201]. In brief, 
VEGFB reduced hypoxia-induced cell death of mouse 
cortical neurons in culture and mice lacking VEGFB 
were more susceptible to ischemia-induced brain dam-
age [60]. Moreover, VEGFB was neuroprotective in 
mouse models of stroke and ocular neurodegenerative 
disorders [134]. VEGFB appears to be valuable for the 
potential treatment of motor disorders. VEGFB defi-
ciency worsens motor neuron degeneration in an ALS 
model, while supplementation of VEGFB protects cul-
tured motor neurons from growth factor withdrawal-
induced cell death [202]. Furthermore, delivery of 
recombinant VEGFB via osmotic pumps into the brain 
ventricles of ALS rodent model protects brainstem 
motor neurons and enhanced survival and relieved dis-
eases symptoms [202]. Administration of VEGFB was 
also neuroprotective in cultures of dopaminergic neu-
rons from Parkinson’s disease (PD) rat models, as well 



Page 14 of 21Aksan and Mauceri ﻿Journal of Biomedical Science           (2025) 32:33 

as in in vivo PD rat models [203–205]. Finally, a recent 
neuroprotective effect of VEGFB in cerebellar Purkinje 
cells in a mouse model of childhood-onset neurode-
generation with cerebellar atrophy (CONDCA) was 
also reported [206]. Notably, in contrast to VEGFA, 
VEGFB’s neuroprotective effects occur independently 
of angiogenesis, mediated instead by neuronal VEGFR1 
[134, 202, 207]. This pathway activates ERK1/2 and Akt 
signaling and upregulates antioxidative and antiapop-
totic mechanisms [134, 135, 200, 203]. Furthermore, 
in an in  vitro cell line model for PD, VEGFB-VEGFR1 
upregulates genes involved in mitochondrial fatty acid 
metabolism and protects against stress-induced mito-
chondrial membrane potential breakdown in DRG 
cells, indicating that one of the mechanisms of VEGFB-
induced neuroprotection is through prevention of 
mitochondrial damage [201, 203, 207]. These findings 
highlight VEGFB’s potential as a non-angiogenic neu-
roprotective therapy with broad applicability.

VEGFC has demonstrated neuroprotective effects in 
PD and stroke models. In a rat unilateral 6-OHDA model 
of PD, VEGFC promoted dopaminergic neuron survival 
both in vitro and in vivo through striatal ERK1/2 activa-
tion [208]. Additional neuroprotective effects may arise 
indirectly through angiogenesis and glial cell activation 
[208]. In a stroke mouse model, intrathecal or intracer-
ebroventricular prophylactic delivery of viral-encoded 
VEGFC increased lymphatic drainage and, thus, pro-
motes neuroprotective signaling and neurological recov-
ery [209, 210].

VEGFD also showed neuroprotective properties with 
most evidence linked to preservation of neuronal integ-
rity in pathologies linked to glutamate overload and exci-
totoxicity. Indeed, mouse VEGFD neuronal expression 
quickly decreased following excitotoxicity in the adult 
retina or in the cortex after stroke [139, 211]. Intrigu-
ingly, expression of the VEGFD receptor VEGFR3 was 
induced after a stroke event in mice, possibly indicative 
of some compensatory mechanisms [139, 212]. VEGFD, 
through direct activation of VEGFR3 on retinal ganglion 
cells (RGC), protected against excitotoxicity-induced 
RGC death and preserved their functions [211]. VEGFD 
delivery in a stroke model successfully protected basal 
dendrites of pyramidal neurons in layer 2/3 of motor 
cortex from stroke-induced damage. This resulted in a 
smaller infarct area and better functional motor recovery 
of the mice post stroke. The neuroprotection appeared to 
be mediated by a direct effect on neurons as no effects 
on superficial pial vessels or capillaries were detected 
[139]. Intriguingly, these effects are specific to VEGFD, as 
VEGFC and VEGFA fail to replicate them [139]. Moreo-
ver, the structural and functional protection could still 
be achieved via nasally delivered recombinant VEGFD 

or VEGFD mimetic peptide and further underscores its 
translational potential [139].

Despite promising preclinical results, several chal-
lenges must be addressed to realize VEGFs’ therapeutic 
potential. Comparative studies across VEGF family mem-
bers and diseases will further clarify their therapeutic 
niches and further research is also needed to clarify some 
conflicting findings. In example, the dual roles of VEGFs, 
such as PlGF’s protective and damaging effects, require in 
depth-specific studies to really define the mechanism of 
action. Further, future delivery methods must ensure tar-
geted action to minimize off-target effects, especially in 
angiogenesis-independent applications. Advances in viral 
vectors, mimetic peptides, and isoform-specific VEGFs 
provide promising avenues for achieving this. Indeed, in 
the field dealing with retina pathologies, viral mediated 
deliveries, which can be cell-specific due to tropism and 
molecular biology engineering, are a fast-developing 
reality.

Conclusion and outlook
In conclusion, VEGFs family members, traditionally 
known for their roles in blood and lymphatics vessel 
formation and maintenance, are increasingly recog-
nized for their pivotal roles in the nervous system for 
functions that extend beyond vascular effects. Further, 
many of these effects derive from direct actions on 
neurons. Intriguingly, the presence of VEGF homologs 
in invertebrates with only rudimentary vascular sys-
tems suggests a possible origin of VEGFs in the nerv-
ous system than in the vascular context [265]. VEGFs 
modulate key aspects of neuronal development such 
as neurogenesis and migration. Further, they support 
neuronal resilience against injury and neurodegenera-
tion. VEGFs significantly modulate synaptic functions 
by promoting synaptogenesis, enhancing synaptic sta-
bility, influencing neurotransmitter release and recep-
tor expression at the synapse, fine-tuning synaptic 
strength and responsiveness. Finally, these secreted fac-
tors impact many key aspects of neuronal architecture. 
Future research on VEGFs may focus and expand their 
potential to reshape and repair neuronal architecture, 
especially in contexts of neurodegeneration and neu-
ral injury. By exploring how VEGFs, including distinct 
isoforms and contexts, specifically influence axonal 
growth, dendritic branching, and synaptic formation, 
scientists could harness these molecules to support 
neural connectivity and circuit integrity in the myriads 
of diseases where neural architecture is compromised. 
Treatments targeting VEGF pathways in vascular cells 
are being developed or already under use for cancer 
and eye diseases. However, since it is now clear that 
VEGFs play multiple key roles in the nervous system, it 
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is thus also crucial to consider their potential long-term 
effects, as such therapies may unintentionally impact 
neuronal functions.
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