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Abstract 

Background Triple-negative breast cancer (TNBC) is characterized by high malignancy, strong invasiveness, 
and a propensity for distant metastasis, leading to poor prognosis and relatively limited treatment options. Metformin, 
as a first-line oral hypoglycemic agent, has garnered widespread research interest in recent years due to its potential 
in cancer prevention and treatment. However, its efficacy varies significantly across different tumor types. Histone 
deacetylase inhibitors (HDACi), such as SAHA, have demonstrated antitumor activity, but TNBC responds poorly 
to HDACi monotherapy, possibly due to feedback activation of the JAK-STAT pathway. Exploring the synergistic poten-
tial and underlying mechanisms of combining metformin with HDACi in TNBC treatment is crucial.

Methods We predicted the synergistic effects of metformin and SAHA in TNBC using multiple computational 
methods (CMap, DTsyn, and DrugComb). We also developed a cancer-specific compound mimic library (CDTSL) 
and applied a three-step strategy to identify genes fitting the "metformin sensitization" model. Subsequently, we eval-
uated the synergistic effects of metformin and SAHA in TNBC cell lines through cell proliferation, colony formation, 
and apoptosis assays. Furthermore, we investigated the molecular mechanisms of the combined treatment using 
techniques such as transcriptome sequencing, chromatin immunoprecipitation (ChIP), Western blotting, and meas-
urement of extracellular acidification rate (ECAR). Additionally, we assessed the in vivo antitumor effects of the com-
bined therapy in a nude mouse subcutaneous xenograft model.

Results CMap, DTsyn, and DrugComb all predicted the synergistic effects of SAHA and metformin in TNBC. The 
screening results revealed that HDAC10 played a key role in metformin sensitization. We found that the combina-
tion of metformin and SAHA exhibited synergistic antitumor effects (combination index CI < 0.9) in TNBC cell lines. 
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Introduction
Triple-Negative Breast Cancer (TNBC) is characterized 
by high malignancy, strong invasiveness, and a tendency 
for distant metastasis, leading to a generally poor prog-
nosis [1, 2]. For early-stage TNBC patients, the standard 
treatment protocol is surgical resection combined with 
adjuvant chemotherapy/radiotherapy [3]. However, treat-
ment options for advanced TNBC are relatively limited 
[4, 5].

In TNBC, the high expression of the histone deacety-
lase (HDAC) family is closely associated with the malig-
nant phenotype of the tumor and poor prognosis. For 
instance, HDAC5 is linked to survival rates and metas-
tasis [6], while HDAC2 and HDAC3 are highly expressed 
in invasive TNBC and correlate with low expression of 
estrogen receptor (ER), progesterone receptor (PR), and 
human epidermal growth factor receptor 2 (HER2) [7]. 
HDAC9 promotes tumor cell proliferation by inhibiting 
Bax and DR4 expression [8], and HDAC8 enhances pro-
liferation by upregulating mutant P53 [9]. Additionally, 
HDAC1, HDAC6, and HDAC8 contribute to tumor inva-
sion by increasing matrix metalloproteinase-9 (MMP-9) 
expression [10]. HDAC6 also deacetylates the mamma-
lian sterile twenty kinase 1 (MST1), promoting cell pro-
liferation [11]. Moreover, HDAC1, HDAC7, and HDAC8 
are involved in maintaining the stemness of tumor stem 
cells, promoting TNBC proliferation and migration [12, 
13]. These findings suggest that HDAC enzymes are criti-
cal players in TNBC progression and represent potential 
therapeutic targets [14].

Histone acetylation/deacetylation is an important epi-
genetic regulatory process. HDAC enzymes regulate 
gene transcription by deacetylating histones, influencing 
various biological processes such as cell cycle, apopto-
sis, and autophagy [15, 16]. HDACs are divided into four 
classes: Class I (HDAC1, 2, 3, 8), Class II (IIa: HDAC4, 
5, 7, 9; IIb: HDAC6, 10), Class III (SIRT1-7), and Class 
IV (HDAC11) [15]. Currently, most HDAC inhibitors are 
pan-HDAC inhibitors, including Vorinostat (suberoylani-
lide hydroxamic acid, SAHA), Romidepsin, Belinostat, 
and Panobinostat, which have been approved by the U.S. 

Food and Drug Administration (FDA) for the treatment 
of hematological malignancies [17]. However, these drugs 
have limited efficacy in solid tumors and are prone to 
developing resistance [18]. Therefore, biomarker-guided 
stratified treatment strategies and combination therapies 
are needed to improve efficacy and delay the develop-
ment of resistance [17].

SAHA, developed by Merck, is the world’s first HDACi 
[19]. It has demonstrated antitumor activity in both 
hematologic and solid tumors, with patients generally 
tolerating its dosage well [20]. Although HDAC inhibi-
tors are not yet FDA-approved for TNBC, they have 
shown efficacy in other breast cancer subtypes [21]. 
However, single-agent HDAC inhibitors have limited 
efficacy in TNBC, partly due to feedback activation of 
the JAK-STAT signaling pathway [22]. Therefore, com-
bining HDAC inhibitors with other drugs for combina-
tion therapy may enhance efficacy and delay the onset of 
resistance.

Metformin, as a first-line oral hypoglycemic agent [23, 
24], has been widely studied for its potential in cancer 
prevention and treatment [25–30]. It exerts anticancer 
effects by inhibiting mitochondrial oxidative phospho-
rylation and both AMPK-dependent and independent 
mechanisms [31–34]. However, its efficacy varies across 
cancer types [35, 36]. Drug repurposing, especially in 
combination with other therapies, has shown clinical 
benefits [37–39]. Thus, exploring the synergistic potential 
of metformin in TNBC combination therapies is crucial.

This study investigated the synergistic effects of SAHA 
and metformin in TNBC and their underlying mecha-
nisms. Our findings provide a theoretical basis for the 
combined application of HDAC inhibitors and met-
formin, potentially offering a new strategy for the treat-
ment of TNBC.

Materials and methods
Abbreviations
Given the extensive use of abbreviations in our study, We 
have compiled a comprehensive list of abbreviations and 

Mechanistically, metformin inhibited histone acetylation on FGFR4, thereby blocking the feedback activation of FGFR4 
downstream pathways induced by SAHA. Furthermore, metformin interfered with the glycolysis process induced 
by SAHA, altering the metabolic reprogramming of tumor cells. In in vivo experiments, the combined treatment 
of metformin and SAHA significantly inhibited the growth of subcutaneous tumors in nude mice.

Conclusions Metformin enhances the sensitivity of TNBC to HDAC inhibitors by blocking the FGFR4 pathway 
and interfering with metabolic reprogramming. When used in combination with SAHA, metformin exhibits synergistic 
antitumor effects. Our study provides a theoretical basis for the combined application of HDAC inhibitors and met-
formin, potentially offering a new strategy for the treatment of TNBC.
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their corresponding full names in the in Supplementary 
Table S1

Cell lines and compounds
We got the MDA-MB-231, BT-549, HCC1806, and 
Hs578T cell lines from the Shanghai Cell Bank Type 
Culture Collection Committee. These cell lines are 
often used as models for TNBC. The HEK293T cell line, 
derived from embryonic kidney cells, was also obtained 
from the same source. The American Type Culture Col-
lection (ATCC) instructed us on how to culture these 
cells. The cells used in our experiments had been pas-
saged no more than six times.

We purchased metformin (catalog No. D9351) from 
Beijing Solarbio Science & Technology Co., Ltd. and 
other small molecule compounds: JQ1 (catalog No. 
HY-13030), SAHA (catalog No. HY-10221) from Med-
Chemexpress Co., Ltd. We diluted all compounds accord-
ing to their manufacturers’ instructions. Metformin was 
dissolved in fresh medium for cell tests and sterilized 
using a 0.22 μm membrane filter (Merck Millipore, cata-
log No. GVWP02500).

Compound mimic library construction and lentivirus 
production
To construct the CRISPR/Cas9-based Drug Target 
Screening Library (CDTSL), the Cambridge Cancer 
Compound Library (CCCL), containing 247 compounds 
(Supplementary Table  S2, Sheet 1) and 353 molecu-
lar targets, was derived from Selleck Chemicals (http:// 
www. selle ckchem. com). Six single-guide RNAs (sgRNAs) 
targeting each molecular target, along with 500 control 
sgRNAs, were designed using tools from the Genome 
Engineering website (http:// www. genome- engin eering. 
org/ crispr/) (Supplementary Table S2, Sheet 2) and bio-
synthesized by SPECTRON (http:// www. spect ron. com. 
cn). Suzhou Hongxun Biotechnologies Co., Ltd. synthe-
sized the sgRNA oligo pools and modified the sgRNA 
cloning vector (lentiCRISPR v2, Addgene catalog No. 
52961) by replacing the antibiotic resistance label with a 
red fluorescent label to reduce false-positive rates during 
the screening process. The CDTSL was then generated by 
amplifying the sgRNAs and cloning them into the modi-
fied vector. Lentivirus production was performed follow-
ing the protocol previously described by Dr. Feng Zhang 
[40].

Two‑step polymerase chain reaction (PCR) and MiSeq 
sequencing
Two-step PCR was used to amplify the barcode sequence 
for next generation sequence (NGS) using Illumina plat-
form. Amplification was performed with 17 cycles for the 
first PCR and 15 cycles for the second PCR. For the first 

PCR, the amount of genomic DNA (gDNA) of each sam-
ple was calculated to ensure a 10000 × coverage of library. 
The assays were performed as previous reported [41].

Three‑step screening strategy for identifying 
metformin‑sensitizing genes
To identify genes that fit the “metformin sensitization” 
model, we employed a three-step screening strategy 
using MAGeCK analysis. In the first step, we compared 
the Day 14 CDTSL group with the Day 0 group and 
screened genes that showed no significant effect (p > 0.05) 
when treated with CDTSL alone. In the second step, we 
compared the Day 14 CDTSL plus metformin group 
with the Day 0 group and identified genes that showed 
significant changes (p < 0.05) when treated with CDTSL 
plus metformin. In the third step, we compared the 
Day 14 CDTSL plus metformin group with the Day 14 
CDTSL group to validate whether these genes showed 
significant differences (p < 0.05) between the CDTSL plus 
metformin and CDTSL alone treatments. Ultimately, we 
found that HDAC10 exhibited a significant metformin-
sensitizing effect. Specifically, CRISPR knockout of 
HDAC10 showed borderline significance in the single 
treatment condition with CDTSL (p = 0.055780), suggest-
ing that the loss of HDAC10 has a relatively mild impact 
on cell survival under these conditions. However, when 
combined with metformin treatment, HDAC10 knock-
out cells displayed a significant reduction in cell survival 
(CDTSL + Met vs. Day 0, p = 0.020368). Further com-
parison revealed that, compared to the single CRISPR 
screening condition, metformin treatment significantly 
enhanced the effect of HDAC10 knockout (CDTSL + Met 
vs. CDTSL, p = 0.022762). This progressive pattern of 
statistical significance strongly suggests that the loss of 
HDAC10 synergistically interacts with metformin, imply-
ing that HDAC10 may play a crucial role in the cellular 
response to metformin-induced metabolic stress (Sup-
plementary Table S3).

Differential analysis and enrichment analysis
Differential expression analysis was performed on the raw 
count matrix (Supplementary Table S4) using the DESeq2 
package, with SAHA treatment group, metformin treat-
ment group, and combined treatment group as experi-
mental groups, and the corresponding untreated group 
or SAHA treatment group as control groups. The criteria 
for differentially expressed genes were adjusted accord-
ing to different comparison combinations: p-value < 0.05 
and |Log2FoldChange|> 1 for SAHA treatment group 
vs. control group, while p-value < 0.05 and |Log2Fold-
Change|> 0.8 for metformin treatment group vs. control 
group and combined treatment group vs. SAHA treat-
ment group. Based on the screened differential genes, 

http://www.selleckchem.com
http://www.selleckchem.com
http://www.genome-engineering.org/crispr/
http://www.genome-engineering.org/crispr/
http://www.spectron.com.cn
http://www.spectron.com.cn
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we conducted enrichment analysis using the clusterPro-
filer package [42] and calculated the zscore value for each 
enrichment entry using the GOplot package [43]. All 
visualizations were completed using the ggplot2 package 
in R. Additionally, we performed Gene Set Enrichment 
Analysis (GSEA) using the pre-defined All Canonical 
Pathways gene set from the MSigDB database [44, 45] to 
evaluate the distribution trend of genes in the gene list 
ranked by phenotype relevance, thereby assessing their 
contribution and relevance to the phenotype [46]. In the 
GSEA analysis, we applied the BH method for p-value 
correction, set the significance threshold to p.adj < 0.05 
and FDR (qvalue) < 0.25, and set the number of calcula-
tions to 100,000 to ensure the reliability and stability of 
the results.

Connectivity map drug sensitivity analysis (CMap)
To evaluate the potential synergistic effects of SAHA and 
metformin, we conducted CMap drug sensitivity analy-
sis [47–49]. First, using the SAHA treatment group or the 
metformin treatment group as the experimental group, 
and the untreated group as the control group, we per-
formed differential expression analysis on the raw count 
matrix (Supplementary Table  S4-7) using the DESeq2 
package. The criteria for differentially expressed genes 
were set to p-value < 0.05 and |Log2FoldChange|> 1. 
After screening, genes were sorted in descending order 
by Log2FoldChange value, and following CMap official 
validation standards, the top 150 up-regulated genes and 
top 150 down-regulated genes with the most significant 
changes in expression were selected as characteristic 
gene sets. Subsequently, we input these characteristic 
gene sets into the CLUE platform (https:// clue. io/) for 
CMap query analysis. Query parameters were set as fol-
lows: L1000, Touchstone, individual query, and Latest. In 
the obtained CMap results, we further filtered with the 
conditions: pert_type as trt_cp (small molecule com-
pound treatment) and cell line as breast cancer cell line 
MDA-MB-231. The significance threshold was set to 
fdr_q_nlog10 > 1.3 (equivalent to FDR < 0.05). Finally, we 
sorted the results in ascending order based on the Nor-
malized Connectivity Score (norm cs), where a larger 
negative value indicates a higher correlation between 
the drug and the input gene characteristics, implying 
stronger potential sensitivity. To visually present the 
results, we selected the top 50 drugs and displayed them 
in a heat map format.

Drug pair synergy prediction: DTsyn and DrugComb
We employed the Dual Transformer encoder model for 
drug pair Synergy prediction (DTSyn) model to predict 
the synergistic effects of drug combinations. DTSyn is 
a deep neural network model based on the multi-head 

attention mechanism, unique in its combination of two 
Transformer encoders of different granularities: a fine-
granularity Transformer encoder for capturing chemi-
cal substructure-gene and gene–gene associations, and 
a coarse-granularity Transformer encoder for extracting 
chemical-chemical and chemical-cell line interactions 
[50]. We utilized the RNA-Seq expression profile data of 
cancer cell lines provided by the Cancer Cell Line Ency-
clopedia (CCLE) database (https:// sites. broad insti tute. 
org/ ccle/) as model input. The construction of the train-
ing set and the selection of drug pairs (METFORMIN 
and SAHA/VORINOSTAT) followed the Python script 
specifications provided by the PaddleHelix framework to 
ensure data consistency and reproducibility. After com-
pleting the DTSyn analysis, we used the ggplot2 package 
in R to generate bubble charts, visually presenting the 
Synergy Probability results. Drug combination sensitiv-
ity scores (CSS, S, ZIP, Bliss, HSA) were derived from the 
DrugComb database, and a combination of heat maps 
and bar charts was generated using the ggplot2 package 
in R.

CERES score for pan‑cancer cell line growth essentiality: 
revealing the critical degree of genes for cell survival
The CERES score is derived from the genome-wide 
CRISPR screening data published on the DepMap por-
tal (https:// depmap. org/ portal/ downl oad/). This scoring 
system, based on the CERES algorithm, quantifies the 
necessity of approximately 17,000 candidate genes for cell 
survival [51]. The CERES algorithm employs alternating 
least squares regression, fitting the model to observed 
data through online computation to infer gene knock-
out effects and other related parameters. Subsequently, 
the gene knockout effects for each cell line are normal-
ized, resulting in a score range with clear biological 
significance: a score of 0 indicates that the gene is non-
essential for cell survival, while a score of 1 represents 
the median effect of common core essential genes, where 
gene knockout would lead to significant cell growth inhi-
bition or death. The advantage of this scoring system lies 
in its ability to precisely quantify the importance of spe-
cific genes for the survival and proliferation of cell lines. 
Through CERES scores, researchers can quickly identify 
genes crucial for specific cancer types or subtypes.

Expression profile and prognosis analysis: a systematic 
research approach integrating multi‑source data
We obtained and organized RNAseq data from 33 tumor 
projects in the TCGA database (https:// portal. gdc. cancer. 
gov) using the TCGAbiolinks package. These data were 
processed through the STAR pipeline and extracted in 
TPM (Transcripts Per Million) format. Among them, the 
TCGA-BRCA (Breast Invasive Carcinoma) project data 

https://clue.io/
https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
https://depmap.org/portal/download/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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received special attention. Prognosis-related clinical data 
were sourced from the study by Liu J et al. [52]. To ensure 
data quality, we excluded samples lacking clinical infor-
mation and duplicates. All expression data underwent 
log2(value + 1) transformation. Expression profile analy-
sis utilized the stats package and car package, employ-
ing the Mann–Whitney U test for statistical analysis, a 
non-parametric test method suitable for evaluating dif-
ferences in gene expression levels. The survival package 
was used to test proportional hazards assumptions and 
fit survival regression models. To optimize grouping 
strategies, we applied the surv_cutpoint function from 
the survminer package to determine the optimal group-
ing cut-off value. Result visualization primarily relied on 
the survminer package and ggplot2 package. Conven-
tional significance level markers were adopted: *p < 0.05; 
**p < 0.01; ***p < 0.001.

Measurement of cell viability after drug treatment
To see how drugs interact with each other, we first set up 
concentration gradients of metformin in various 96-well 
plates. The concentration gradients of the compound 
were then set up in the horizontal wells of each 96-well 
plate. After an additional 72 h, we used the Cell Count-
ing Kit-8 (Beyotime Biotechnology, catalog No. C0040) 
to determine cell viability. Finally, the combination index 
(CI) was determined using the Chou-Talalay approach to 
assess the interaction between the two drugs. The CI pro-
vides a quantitative measure of the interaction, indicating 
synergy (CI < 1), an additive effect (CI = 1), or antagonism 
(CI > 1) [53]. The experiments were repeated in triplicate.

To assess cell proliferation following transient overex-
pression or small interfering RNA (siRNA) transfection 
combined with drug treatment, we initially harvested the 
cells from culture dishes using trypsin on the first day. 
We then plated 5,000 cells per well for each treatment 
group in a 96-well plate. After 24 h, cell proliferation was 
evaluated using the Cell Counting Kit-8 (Beyotime Bio-
technology, catalog No. C0040) according to the manu-
facturer’s instructions. The experiments were conducted 
in triplicate.

Colony formation assay
On the first day, 1000 MDA-MB-231 cells were seeded 
into each well of a six-well plate. After 24 h, different con-
centrations of SAHA (0, 0.125, 0.25, 0.5, or 1 μM), met-
formin (0, 2 or 4 mM), or their combinations were added 
to the wells. After 14  days, the formed colonies were 
stained using crystal violet and quantified using ImageJ 
software. The colony counts were then plotted using 
GraphPad Prism 7.0, with each experimental group per-
formed in triplicate to ensure statistical reliability. Plots 
showing layered data were created as superplots [54].

Measurement of cell apoptosis
We first digested the cells in the different treatment 
groups using trypsin without EDTA (Solarbio, catalog 
No. T1350). Then, we measured cell apoptosis according 
to the manufacturer’s protocol for the Annexin V-FITC/
Propidium Iodide (PI) Apoptosis Detection Kit (Yeasen 
Biotechnology, catalog No. 40302ES60). Cell apoptosis 
assays were conducted in triplicate.

Chromatin immunoprecipitation (ChIP) assay
We provided rabbit monoclonal antibody anti-acetyl-
histone H3K9 (1:50, Cell Signaling Technology, catalog 
No. 9649), anti-BRD4 (1:50, Cell Signaling Technology, 
catalog No. 13440) and Shanghai FuHeng Biotechnology 
Co., Ltd. accomplished ChIP assay. Each ChIP was per-
formed with triplicate biological replicates. Plots showing 
layered data were created as superplots [54]. We list the 
primers used for the ChIP-qPCR assay in Supplementary 
Table S8.

Quantitative real‑time PCR (qPCR)
We digested cells in different treatment groups by trypsin 
from culture dishes, and we extracted total RNA accord-
ing to the manufacturer’s protocol of RNAeasy kit (Qia-
gen, 74104). Next, we reverse-transcribed total RNA 
into cDNA according to the manufacturer’s protocol of 
HiScript III RT SuperMix for qPCR with a gDNA wiper 
(Vazyme Biotech Co.,Ltd., catalog No. R323-01). Then, 
we quantified qPCR analysis according to the manu-
facturer’s protocol of ChamQ SYBR qPCR Master Mix 
(Vazyme Biotech Co.,Ltd., catalog No. Q311-02). We list 
the primers used for the qPCR assay in Supplementary 
Table  S8. We used the comparative Ct (ddCt) method 
and normalized the values of target genes to the expres-
sion of β-actin (an endogenous control) [55].

Western blot
We digested cells in different treatment groups by trypsin 
from culture dishes. After washing by PBS, 2% SDS was 
added, mixed, and placed in a 100  ℃ metal bath and 
reacted for 10–20 min. Next, we determined the protein 
concentrations according to the manufacturer’s proto-
col of a BCA protein assay kit (Vazyme Biotech Co.,Ltd., 
catalog No. E112-01). After adding 5 × SDS-PAGE sam-
ple buffer (Beyotime Biotech Inc., catalog No. P0015L), 
we boiled the proteins for another 5 min. Then, we sepa-
rated proteins by SDS-PAGE and transferred the resolved 
proteins onto polyvinylidene difluoride membranes. 
After blocking the membranes for 60 min with 5% BSA 
in PBST, we blotted the membranes with the following 
primary rabbit monoclonal antibodies for 12–16  h at 
4 ℃: anti-acetyl-α-Tubulin (Lys40) (1:1000, Cell Signal-
ing Technology, catalog No. 5335), anti-FGFR4 (1:1000, 
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Cell Signaling Technology, catalog No. 8562), anti-JAK1 
(1:1000, Cell Signaling Technology, catalog No. 3344), 
anti-phospho-STAT3 (Tyr705) (1:1000, Cell Signaling 
Technology, catalog No. 9145), anti-STAT3 (1:1000, Cell 
Signaling Technology, catalog No. 4904), anti-cleaved-
PARP (1:1000, Cell Signaling Technology, catalog No. 
5625), anti-MCL-1 (1:1000, Cell Signaling Technology, 
catalog No. 5453), anti-phospho-Akt (Ser473) (1:1000, 
Cell Signaling Technology, catalog No. 4060), anti-Akt 
(1:1000, Cell Signaling Technology, catalog No. 4685), 
anti-phospho-Erk1/2 (Thr202/Tyr204) (1:1000, Cell Sign-
aling Technology, catalog No. 4370), anti-Erk1/2 (1:1000, 
Cell Signaling Technology, catalog No. 9102). After 
extensive washing with PBST, the membranes were incu-
bated for 2 h at room temperature with HRP-conjugated 
goat anti-rabbit antibody (1:5000, Affinity, catalog No. 
S0001), and we detected signals with an enhanced chemi-
luminescence substrate (Pierce Biotechnology). The 
image acquisition tool was Molecular Imager ChemiDoc 
XRS + (Bio-Rad Laboratories, Inc.) with Image Lab Soft-
ware. Immunoblotting was carried out in three biologi-
cal replicates. Plots showing layered data were created as 
superplots [54].

siRNA transfection
All siRNAs were synthesized by Huzhou Hippo Bio-
technology Co., Ltd. The siRNA sequences are listed in 
Supplementary Table S8. We first dissolved each freeze-
dried powder siRNA in nuclease-free water to a final 
concentration of 20 μM. Next, we transiently transfected 
with siRNAs according to the manufacturer’s proto-
col of Lipofectamine RNAiMAX Transfection Reagent 
(Thermo Fisher Scientific Inc., catalog No. 13778030). 
We removed the medium 6–12  h after the transfection 
and replaced it with a complete medium. Then, we per-
formed other experiments after culturing for another 
24–48 h.

Transient overexpression
We purchased the empty control plasmid (pENTER) 
and overexpression plasmid (pENTER-FGFR4) from 
WZ Biosciences Inc. (Shandong, China). We verified 
the efficiency of overexpression by qPCR. We list prim-
ers used to construct these plasmids in Supplementary 
Table  S8. According to the manufacturer’s protocol of 
Lipofectamine 3000 Transfection Reagent (Thermo 
Fisher Scientific Inc., catalog No. L3000001), we gently 
mixed plasmid and Opti-MEM I (Invitrogen Inc., catalog 
No. 31985062) reduced serum medium and then incu-
bated at room temperature for 5 min. Similarly, we mixed 
Lipo3000 and Opti-MEM I reduced serum medium and 
then incubated at room temperature for 5  min. Next, 
we gently mixed diluted plasmid and Lipo3000 and then 

incubated at room temperature for 20  min. Finally, we 
added the complex into the six-well plate, 2 mL per well. 
Then, we performed other experiments after culturing 
for another 24–48 h.

Measurement of extracellular acidification rate (ECAR)
We digested cells in different treatment groups by trypsin 
from culture dishes. After counting by automated cell 
counter, they were reseeded into an XFe96 microplate 
by a multi-channel pipette at a density of 5000 cells per 
well in XF-Base Medium Minimal DMEM supplemented 
with glucose (25 mM) and pyruvate (1 mM). Each group 
had five replicate wells. After covering the lid, the XFe96 
microplate was incubated overnight in a 37 °C, 5% CO2 
humidified incubator. The day before we examined 
ECAR, we also warmed up the Seahorse XFe96 analyzer 
to room temperature and hydrated a probe plate over-
night with an XF calibrant solution (200  μl per well) at 
37  °C in a custom incubator without CO2. Next, we 
measured ECAR according to the manufacturer’s proto-
col of a Seahorse XF Glycolysis Stress Test Kit (Agilent 
Technologies Inc., catalog No. 103020-100). The ECAR 
values were measured from 3 wells per sample, and the 
experiments were repeated three times.

In vivo xenograft experiments
We purchased six-week-old nude female mice from 
Shanghai Jihui Laboratory Animal Co., Ltd. and treated 
MDA-MB-231 cells with Mycoplasma Elimination Rea-
gent (Yeasen Biotechnology, catalog No. 40607ES03). 
Subcutaneous were established as previously described 
[56]. Each treatment group consisted of eight mice. We 
started oral drug treatment to mice since their tumors 
reached 100  mm3. We randomized mice into four groups: 
vehicle, SAHA (100  mg/kg), metformin (200  mg/kg), or 
the combination of SAHA (100  mg/kg) and metformin 
(200  mg/kg) as previously described [22, 57]. We dis-
solved metformin in saline and SAHA in a 50:50 mix of 
saline and PEG300 (MCE, catalog No. HY-Y0873). We 
treated mice with drugs for 28 continuous days. During 
this period, we measured the mice’s weight and recorded 
the width and length of the tumors twice per week. We 
calculated the tumor volume using the formula: Tumor 
volume (V) = (length ×  width2)/2 as previously described 
[58]. Then we sacrificed these mice and fixed tumors in 
4% paraformaldehyde (Absin Bioscience Inc., catalog No. 
abs9179).

Immunohistochemistry (IHC)
We provided the following primary antibodies: rab-
bit monoclonal anti-FGFR4 (1:100, ABclonal 
Technology, catalog No. A9197), rabbit monoclonal anti-
phospho-STAT3 (Tyr705) (1:100, ABclonal Technology, 
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catalog No. AP0070), rabbit monoclonal anti-STAT3 
(1:100, Abways Technology, catalog No. CY5016), rabbit 
polyclonal anti-MCL-1 (1:500, Servicebio, catalog No. 
GB11696) and Wuhan Servicebio Technology Co., Ltd. 
performed H&E and IHC staining of mice tumor sec-
tions. For immunohistochemistry, three fields of view per 
sample were imaged.

Statistical analysis
We performed quantification and statistical analysis with 
GraphPad Prism 7.0. Data were presented as mean ± SD 
unless otherwise stated. Significance was determined by 
a two-tailed Student’s t-test or one-way analysis of vari-
ance (ANOVA). Statistical significance thresholds were 
set at n.s. insignificant, *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.

Results
CMap analysis supported the synergistic effect of SAHA 
and metformin
Connectivity Map Drug Sensitivity Analysis (CMap) is 
a computational method based on gene expression data 
(Fig. 1A) used to reveal functional connections between 
drugs, diseases, and genes. This method is widely applied 
in drug repositioning, mechanism exploration, prediction 
of drug efficacy, and biomarker identification [47–49]. To 
investigate the potential synergistic effect of SAHA and 
metformin in triple-negative breast cancer (TNBC), we 
first analyzed the transcriptomic data of cells treated with 
each drug separately.

For the SAHA-treated cells, we generated a charac-
teristic gene expression profile (Fig.  1B) and performed 
CMap analysis to evaluate whether metformin is a highly 
sensitive drug following SAHA treatment. The results 
showed that, under the restrictive breast cancer cell line 
condition (MDA-MB-231), we identified 934 drugs with 
statistically significant effects. These drugs were ranked 
in ascending order based on the Normalized Connectiv-
ity Score (norm_cs), where larger negative values indi-
cated higher drug sensitivity. Metformin ranked relatively 
high among the 934 drugs (46/934) with a − Log10FDR 
of 1.7566 and Norm CS of −  1.1822 (Fig.  1D), suggest-
ing a strong correlation with the gene expression pattern 
induced by SAHA treatment.

Similarly, we applied the same analysis process to 
the gene expression profile of metformin-treated cells 
(Fig.  1C) and performed CMap analysis. The results 
showed that SAHA also ranked statistically significant 
among all listed drugs, but not as highly as metformin 
did in the SAHA-treated cells (Supplementary Table S9).

CDTSL identified a SAHA target enhancing metformin’s 
anticancer effect
Since library screening is an effective method for identi-
fying synergistic drug targets, we further used metformin 
to screen for suitable targets for combination therapy in 
TNBC, thereby validating the synergistic effect between 
metformin and SAHA. Specifically, a mimic library cre-
ates drug-like effects through gene knockout instead of 
adding compounds. Knocking out the “X” gene mimics 
the action of an “X” inhibitor. By comparing changes in 
the target gene “X” under these conditions, we can iden-
tify genes and inhibitors that are ineffective alone but 
show enhanced anticancer effects when combined with 
metformin in TNBC cells (Supplementary Fig. S1A).

We constructed and screened CDTSL with the help 
of the Selleck Cambridge Cancer Compound Library. 
The Selleck Cambridge Cancer Compound Library is 
a unique collection of compounds targeting cancer. It 
encompasses most cancer targets, such as kinases, Notch 
signaling pathway, and metabolic targets. We collected 
353 targets of the 247 compounds from the above-men-
tioned library. We then designed six sgRNA sequences 
for each target. We added 500 sgRNA sequences for 
the negative control. This work involved 2618 sgRNA 
sequences, which were the composition of the CDTSL 
sgRNA sequences (Supplementary Fig. S1B and Supple-
mentary Table S2). After introducing CDTSL, metformin 
treatment, and library screening, we performed PCR 
amplification and NGS on different samples (Supplemen-
tary Fig. S1C).

To achieve our goal, we employed a three-step screen-
ing strategy to identify genes that fit the "metformin sen-
sitization" model. In the first step, we screened genes that 
showed no significant effect when treated with CDTSL 
alone (p > 0.05), with a particular focus on the 185 genes 
with borderline significance (Supplementary Table  S3, 
Sheet 1). In the second step, we identified genes that 
showed significant changes when treated with CDTSL 

(See figure on next page.)
Fig. 1 The overview of the CMap drug sensitivity analysis and its results were displayed. A Schematic representation of the CMap analysis workflow. 
B, C Volcano plots displaying differentially expressed genes. The highlighted genes corresponded to the top 150 upregulated and downregulated 
genes used as input for the CMap analysis. (B) compared the SAHA-treated group with the control group; (C) compared the Metformin-treated 
group with the control group. D Heatmap of the top 50 predicted sensitive drugs based on the gene expression profile of the SAHA-treated group, 
ranked by Normalized Connectivity Score, illustrating potential synergistic or antagonistic effects
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Fig. 1 (See legend on previous page.)



Page 9 of 19Gu et al. Journal of Biomedical Science           (2025) 32:36  

plus metformin (p < 0.05) (Supplementary Table S3, Sheet 
2). In the third step, we validated whether these genes 
showed significant differences between the CDTSL plus 
metformin and CDTSL alone treatments (p < 0.05) (Sup-
plementary Table  S3, Sheet 3). Ultimately, we identified 
67 candidate genes that met the "metformin sensitiza-
tion" criteria (Supplementary Fig. S1D and Supplemen-
tary Table  S3, Sheet 4). Functional enrichment analysis 
revealed a significant enrichment of histone modifica-
tion-related genes (Supplementary Fig. S1E).

Among these genes, SAHA’s target gene HDAC10, a key 
histone deacetylase, exhibited a significant metformin-
sensitizing effect. HDAC10 is known to play a crucial 
role in cancer progression by regulating cell prolifera-
tion [59], apoptosis [60], migration and invasion [61], and 
angiogenesis [62]. Additionally, analysis of sequencing 
data from 1,462 breast cancer patients revealed a signifi-
cant correlation between HDAC10 expression levels and 
patient prognosis (Supplementary Fig. S2). Therefore, the 
results of the library screening supported the synergistic 
effect of SAHA and metformin in TNBC.

Metformin synergized with SAHA to inhibit TNBC growth
To further determine the appropriate cell lines for con-
tinued combination therapy experiments, we employed 
two additional computational methods to predict the 
effects of Metformin and SAHA (Vorinostat).

First, we used the DTSyn model, a deep neural network 
with multi-head attention, which effectively captures 
interactions between chemical substructures, genes, and 
cell lines. The model predicted a significant synergistic 
effect in most breast cancer cell lines, with the HS578T 
cell line showing a synergy probability close to 0.75 
(Fig. 2A).

Next, we used the DrugComb database to assess the 
drug combination’s synergy, focusing on the Combina-
tion Sensitivity Score (CSS) and Synergy Score (S). Both 
scores indicated strong synergy potential, particularly in 
breast cancer subtypes, despite other metrics like ZIP, 
Bliss, and HSA being lower (Fig. 2B).

We then conducted cell proliferation assays to deter-
mine if metformin synergizes with SAHA in inhibiting 
TNBC. We measured the inhibition rates at different drug 
concentrations and calculated the combination index 
(CI) for each. In MDA-MB-231 cells (Fig. 2C), the inhi-
bition rate increased with higher concentrations of both 
SAHA and metformin. Most CIs were below 0.9, indicat-
ing a synergistic effect in inhibiting MDA-MB-231 cell 
growth. This synergy was also observed in Hs578T cells 
(Supplementary Fig. S3).

After assessing 72  h cell proliferation, we investigated 
the long-term effects of the drug combination using 

a colony formation assay. The results aligned with the 
short-term findings (Fig. 2D, Supplementary Fig. S4).

In summary, SAHA and metformin may induce similar 
drug-responsive gene expression patterns. These com-
putational results not only align with our experimen-
tal observations, but also offer new research directions 
for exploring the molecular mechanisms underlying the 
combined use of SAHA and metformin.

Metformin reversed SAHA‑induced feedback activation 
by inhibiting histone acetylation on FGFR4
Previous study has shown that HDAC inhibitors 
increased the histone acetylation levels of the leukemia 
inhibitory factor receptor (LIFR) gene promoter region, 
recruiting the histone acetylation recognition protein-
bromodomain-containing protein 4 (BRD4), which sub-
sequently upregulated LIFR expression in tumor tissues. 
This elevated LIFR pathway activates the downstream 
JAK1-STAT3 signaling pathway, leading to treatment fail-
ure [22].

Additionally, research suggests that the feedback acti-
vation of the STAT3 signaling pathway may be the rea-
son why TNBC, unlike other breast cancer subtypes, is 
not responsive to SAHA treatment. Therefore, inhibiting 
the STAT3 feedback activation induced by SAHA could 
be key to improving the efficacy of HDAC inhibitors in 
TNBC.

It is also known that metformin can target STAT3, 
inhibiting the proliferation of TNBC cells and inducing 
apoptosis [63].

Given that LIFR is just one of many membrane recep-
tors capable of activating the JAK-STAT signaling path-
way, we hypothesized that other receptors might also 
be feedback-activated by SAHA but inhibited by met-
formin. This could have partially explained why met-
formin reversed the insensitivity of TNBC cells to SAHA 
treatment.

To investigate how metformin enhanced the effective-
ness of SAHA in treating TNBC, we performed tran-
scriptome sequencing to identify differentially expressed 
genes in the SAHA-treated (Supplementary Fig. S5A) 
and metformin-treated (Supplementary Fig. S5E) 
groups compared to controls (Supplementary Table S4). 
Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes (GO-KEGG) pathway enrichment analysis 
revealed that the SAHA-treated groups were enriched 
in pathways related to the response to fibroblast growth 
factor (FGFR) and the positive regulation of protein 
kinase activity (Supplementary Fig. S5A), with particular 
emphasis on FGFR-related pathways (Fig.  3B). Consist-
ent with previous reports, the LIFR gene was significantly 
upregulated in the SAHA-treated groups compared to 
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controls, as highlighted by the purple dot on the volcano 
plots (Supplementary Fig. S5D).

Next, we identified common elements among the 
upregulated genes in the SAHA-treated groups (Sup-
plementary Fig. S5B), the downregulated genes in the 
metformin-treated groups (Supplementary Fig. S5F), 
and membrane receptors associated with the JAK-STAT 
signaling pathway (Supplementary Fig. S5B, C, F, G). We 
also overlapped the downregulated genes in the combi-
nation-treated groups (Fig. 3A) compared to the SAHA-
treated groups, taking into account the functional nature 
of membrane receptors and their expected experimen-
tal effects. Fibroblast growth factor receptor 4 (FGFR4) 
emerged as a key intersecting gene (Fig. 3A, Supplemen-
tary Fig. S5D, H, Supplementary Table S10).

To test our hypothesis, we added the BRD4 inhibitor 
JQ1 to the SAHA treatment group and observed reduced 

FGFR4 protein expression (Fig.  3C, Supplementary Fig. 
S6A). ChIP experiments showed that SAHA increased 
histone acetylation on BRD4 and FGFR4 genes, while 
metformin inhibited it (Fig. 3D). We then confirmed that 
metformin disrupted SAHA-induced feedback activation 
of FGFR4 and its downstream pathways (FGFR4-JAK1-
STAT3, FGFR4-AKT, FGFR4-ERK) at both the transcrip-
tome (Fig. 3E) and protein levels (Fig. 3F, Supplementary 
Fig. S6B).

In addition, we evaluated cell apoptosis and prolifera-
tion after FGFR4 interference before SAHA treatment 
in MDA-MB-231 cells. We observed a notable increase 
in apoptosis and a marked inhibition of cell prolifera-
tion (Supplementary Fig. S7A, Fig. S8). Conversely, when 
FGFR4 was overexpressed using an expression plas-
mid in metformin-treated MDA-MB-231 cells, apopto-
sis was reduced, and cell proliferation was not inhibited 

Fig. 2 SAHA and metformin worked synergistically to inhibit TNBC. A The DTSyn algorithm calculated the drug synergy probability 
between Metformin and SAHA/Vorinostat in breast cancer cell lines. B Sensitivity scores for the drug combination (Metformin and Vorinostat/
Zolinza [SAHA]) across different breast cancer subtypes. The heatmap on the left displayed the sensitivity of various breast cancer cell lines 
to the drug combination, the bar chart in the middle showed the average sensitivity score for each breast cancer subtype, and the definitions 
of the five sensitivity scores were provided on the right. C The percentage inhibition (up panel) and CI (down panel) at each concentration 
of the drugs were presented. MDA-MB-231 cells were treated with SAHA, metformin, or both at the concentrations as indicated. D The colony 
formation assay and its quantification of MDA-MB-231 cells treated with SAHA, metformin, or their combination were presented. MDA-MB-231 cells 
(1,000 per well) were seeded into six-well plates and treated after 24 h with varying concentrations of SAHA, metformin, or their combination. After 
14 days, colonies were stained with crystal violet, quantified using ImageJ, and plotted with GraphPad Prism 7.0. All experiments were performed 
in triplicate. Error bars represented means ± SD from triplicates. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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(Supplementary Fig. S7C, Fig. S8). At the protein level, we 
also observed similar trends in the expression of the anti-
apoptotic factor myeloid cell leukemia-1 (MCL-1) (Supple-
mentary Fig. S7B, D).

In summary, metformin effectively reversed SAHA-
induced feedback activation in TNBC by inhibiting his-
tone acetylation on FGFR4, as demonstrated through 
histone modification (ChIP), transcriptome sequencing, 
and protein analysis. FGFR4 emerged as a key target in 
this process, confirming metformin’s role in disrupting the 
feedback loop.

Metformin enhanced SAHA’s efficacy in TNBC 
through metabolic reprogramming
To further explore how metformin inhibited the expres-
sion of FGFR4, through GO-KEGG pathway enrichment 
analysis, we found that the metformin treatment groups 
were enriched in pathways such as glycolysis/gluconeo-
genesis (Fig. 4A) compared with the control groups.

Given that metformin is a metabolic inhibitor [64], we 
hypothesized it might affect FGFR4 expression via meta-
bolic pathways. Literature indicates that FGFR amplifica-
tion in cancers is closely tied to glycolysis dependency 

Fig. 3 Metformin reversed SAHA-induced feedback activation by inhibiting histone acetylation on FGFR4. A The Venn diagram displayed 
the intersection of upregulated genes in the SAHA-treated group, downregulated genes in the Metformin-treated group, downregulated genes 
in the SAHA + Metformin combination group, and membrane receptor genes. B GSEA analysis was performed on the differential expression 
results between the SAHA-treated group and the control group. C Immunoblotting showed the change in FGFR4 and STAT3 phosphorylation. 
MDA-MB-231 cells pretreated with JQ1 for 24 h were exposed to SAHA for a further 12 h. FGFR4 and STAT3 phosphorylation changes were 
detected by immunoblotting. All bands were quantified from experiments repeated three times. D Histone acetylation on the FGFR4 promoter. 
(Left) MDA-MB-231 cells were treated with SAHA (5 μM) for 12 h before being subjected to ChIP assay using anti-acetylhistone H3K9 (Ac-H3K9) 
antibody followed by qPCR analysis using primers targeting the indicated FGFR4 promoter region. (Middle) BRD4 enrichment on the FGFR4 
promoter. MDA-MB-231 cells were treated with SAHA (5 μM) for 12 h before being subjected to ChIP assay using anti-BRD4 antibody. qPCR analysis 
was performed using primers targeting the indicated FGFR4 promoter region. (Right) MDA-MB-231 cells were treated with Metformin (20 mM) 
for 48 h before being subjected to ChIP assay using anti-acetylhistone H3K9 (Ac-H3K9) antibody followed by qPCR analysis using primers targeting 
the indicated FGFR4 promoter region. All experiments were performed in triplicate. Error bars represent means ± SD from triplicates. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001. E FGFR4 mRNA level changes. MDA-MB-231, BT-549, and HCC1806 cells were treated with SAHA (5 μM) 
for 24 h or metformin (20 mM) for 48 h. Samples were analyzed by qPCR assay. Error bars represent means ± SD from triplicates. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. F Immunoblotting showed the change in FGFR4 and STAT3 phosphorylation. (Left) MDA-MB-231 cells were treated 
with indicated SAHA (0, 5, 10 μM) for 12 h. (Middle) MDA-MB-231 cells were treated with indicated metformin (0, 10, 20, 40 mM) for 48 h. (Right) 
MDA-MB-231 cells pretreated with metformin (20 mM) for 36 h were exposed to SAHA (5 μM) for further hours. FGFR4 and STAT3 phosphorylation 
changes were detected by immunoblotting. All bands were quantified from experiments repeated three times
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[65]. We speculated that metformin might inhibit FGFR4 
expression, thereby impacting glycolysis.

Our qPCR experiments showed that metformin sup-
presses several metabolic genes (e.g., SLC2A, LDHA, 
PFKL) (Fig. 4B). ECAR assays further revealed that met-
formin significantly reduced SAHA-induced glycolysis 
(Fig.  4C). Similarly, FGFR4 knockdown, even without 

metformin, also decreased SAHA-induced glycolysis 
(Fig. 4D).

This study revealed the key role and clinical signifi-
cance of FGFR4 in pan-cancer and breast cancer through 
multidimensional analysis. CRISPR-Cas9 screening from 
the DepMap database showed that FGFR4 knockout sig-
nificantly inhibited cell growth or caused cell death in 

Fig. 4 Metformin enhanced SAHA’s efficacy in TNBC through metabolic reprogramming. A GSEA analysis was conducted on the differential 
expression results between the metformin-treated group and the control group. B The mRNA levels of metabolism-related genes (SLC2A, LDHA, 
PFKL) were measured. MDA-MB-231 cells were treated with 2 μM DMSO or 20 mM metformin for 48 h. C ECAR was measured in MDA-MB-231 
and HCC1806 cells exposed to 2 μM DMSO, 5 μM SAHA, 20 mM metformin, or 5 μM SAHA + 20 mM metformin. The ECAR was analyzed 
using the Seahorse XF Glycolysis Stress Test Kit and the Seahorse XFe96 analyzer. The ECAR values were measured from 3 wells per sample, 
and the experiments were repeated three times. D ECAR was measured in MDA-MB-231 and HCC1806 cells transfected with NC or FGFR4 
siRNAs for 48 h before exposure to 2 μM DMSO or 5 μM SAHA for 24 h. The ECAR was analyzed using the Seahorse XF Glycolysis Stress Test Kit 
and the Seahorse XFe96 analyzer. The ECAR values were measured from 3 wells per sample, and the experiments were repeated three times
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various breast cancer cell lines (Supplementary Fig. S9A). 
FGFR4 exhibited differential expression across tumor 
types (Supplementary Fig. S9B) and was most highly 
expressed in PR-Negative, ER-Indeterminate, HER2-Pos-
itive, and PAM50 Her2 subtypes. Expression increased 
with advanced stage and was higher in patients under 60 
(Supplementary Fig. S9C).

Survival analysis across four datasets consistently 
linked high FGFR4 expression with poorer progno-
sis, including shorter disease-specific, disease-free, and 
recurrence-free survival (Supplementary Fig. S9D–G). 
We also found that FGFR4 and related metabolic genes 
(SLC2A1, LDHA, PFKL) were upregulated in tumors and 
FGFR4 high-expression groups, suggesting FGFR4’s role 
in tumor metabolism (Supplementary Fig. S9H-L).

In summary, this study highlighted the critical impor-
tance of FGFR4 in both pan-cancer and breast cancer.

Combination of metformin and SAHA inhibited the growth 
of subcutaneous tumors in mice
Finally, we validated this through in vivo experiments and 
found that tumor growth in mice was significantly greater 
when the combination treatment was used compared to 
single-drug treatments (Fig.  5A, B). We quantified the 
changes in FGFR4 and its downstream IHC markers and 
reached consistent conclusions (Fig.  5C, Supplemen-
tary Fig. S10). Lastly, we presented a working model of 
our study to demonstrate the experimental mechanism 
(Fig.  5D). In our study, we found that metformin and 
the HDAC inhibitor SAHA work together in TNBC. 
Metformin inhibits the upregulation of histone acety-
lation on FGFR4, suppressing the feedback activation 
induced by SAHA. This disrupts its downstream path-
ways (FGFR4-JAK1-STAT3, FGFR4-AKT, and FGFR4-
ERK), which helps inhibit cancer cell proliferation and 
resistance to apoptosis. Additionally, metformin impacts 
glycolysis and metabolic genes (e.g., SLC2A, LDHA, 

PFKL), contributing to metabolic reprogramming, which 
enhances the efficacy of SAHA in TNBC.

Discussion
Metformin, primarily used for diabetes management, 
exhibits diverse applications in cancer treatment, particu-
larly in TNBC [66–68]. In the research of combined ther-
apy for TNBC, the mechanisms of action of metformin 
include enhancing the effectiveness of other anticancer 
therapies [69, 70], inhibiting tumor growth and metas-
tasis [71–73], and inducing apoptosis [74]. The impact 
of metformin on cellular metabolic pathways, especially 
those related to glucose metabolism and mitochondrial 
function, is central to its anticancer effects [75, 76].

This study investigates the synergistic sensitizing effects 
of metformin and HDAC inhibitors in TNBC treatment. 
By employing multiple computational methods (CMap, 
DTsyn, and DrugComb) and bioinformatics approaches 
(CRISPR/Cas9 screening), we examined the combined 
effects of the HDAC inhibitor SAHA and metformin. 
The results were further validated through in  vitro and 
in  vivo experiments. On the one hand, HDAC inhibi-
tors, by inhibiting histone deacetylase activity, increase 
the acetylation levels of histones in cells, restoring the 
expression of some tumor suppressor genes (such as 
p21 and p27), thereby inhibiting tumor growth [77]. On 
the other hand, HDAC inhibitors disrupt the balance 
between apoptosis and anti-apoptotic processes in cells, 
inducing the expression of pro-apoptotic genes, which 
then trigger tumor apoptosis through the mitochondrial 
(intrinsic pathway) or death receptor activation (extrin-
sic pathway) [78]. Although no HDAC inhibitor has been 
FDA-approved for TNBC treatment yet, promising clini-
cal outcomes have been observed in other breast cancer 
subtypes [21]. Therefore, our study further elucidates 
how metformin enhances the anticancer effects of HDAC 
inhibitors in TNBC, providing a theoretical basis for the 
future application of HDAC inhibitors in TNBC.

(See figure on next page.)
Fig. 5 Combination of Metformin and SAHA inhibited the growth of subcutaneous tumors in mice. A, B Tumor images (A) and tumor 
growth curve (B) from each treatment group of the MDA-MB-231 xenograft model (n = 8). Mice were orally treated with SAHA (100 mg/kg) 
and metformin (200 mg/kg) alone or in combination daily for up to 4 weeks. Tumors were collected and measured 8 h after the last dosing (A) 
and the tumor growth curve was plotted by measuring the relative tumor volume twice per week (B). Scale bar, 1 cm. Error bars represented 
means ± SD from triplicates. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. C Molecular alterations in the MDA-MB-231 subcutaneous xenograft 
model. Tumor samples, as described in (A), were collected 8 h after the last dosing, and intratumoral molecular changes were detected using 
immunohistochemistry analysis. Scale bar, 20 mm. D Proposed working model. We investigated the synergistic effects of the HDAC inhibitor 
SAHA and metformin in TNBC using multiple computational methods (CMap, DTsyn, and DrugComb) and bioinformatics predictions (CRISPR/
Cas9 screening). The results were further validated through in vitro and in vivo experiments, elucidating the underlying mechanisms. Metformin 
inhibits the upregulation of histone acetylation on FGFR4, thereby suppressing the feedback activation induced by SAHA. This, in turn, affects its 
downstream pathways (FGFR4-JAK1-STAT3, FGFR4-AKT, and FGFR4-ERK), leading to the suppression of cancer cell proliferation and anti-apoptotic 
responses. Additionally, metformin influences glycolysis and metabolic genes (e.g., SLC2A, LDHA, PFKL), participating in metabolic reprogramming, 
which enhances the efficacy of SAHA in TNBC
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Fig. 5 (See legend on previous page.)
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The combination of metformin and HDAC inhibitors 
has shown synergistic effects in various cancers, such 
as osteosarcoma [79], bladder cancer [80], and cholan-
giocarcinoma [81]. For instance, metformin and TSA 
enhanced anti-tumor effects in osteosarcoma cells, inde-
pendent of AMPK [79]. In bladder cancer, metformin 
activated AMPK and worked with Panobinostat to inhibit 
cell growth and apoptosis [80]. Our study uniquely 
explored the synergy of metformin and SAHA in TNBC, 
revealing that metformin enhanced SAHA’s effect via 
FGFR4 feedback inhibition and by inhibiting glycolysis.

Our research demonstrates that the combination of 
metformin and SAHA shows significant synergistic sen-
sitization in different TNBC cell lines (including MDA-
MB-231 and Hs578T), indicating that synergistic effects 
are shared across other TNBC cell lines (Fig. 2C, Supple-
mentary Fig. S3).

In seeking intersections between metformin and 
HDAC inhibitors, we focused mainly on the JAK-STAT 
pathway. According to the research conclusions of 
Geng et  al. [22], screening different molecular subtypes 
of breast cancer cell lines for their sensitivity to SAHA 
revealed that TNBC cells were almost absent in the sub-
sets most responsive to SAHA. In contrast, nearly all 
TNBC cells were in the subsets least responsive. It sug-
gests that the feedback activation of the STAT3 signaling 
pathway is a crucial reason for the insensitivity of TNBC 
to SAHA treatment compared to other breast cancer 
subtypes.

We found that metformin not only downregulates the 
expression of FGFR4 but also alters the glycolysis path-
way. Since metabolic reprogramming plays a crucial role 
in cancer development and progression, targeting cellular 
metabolism has become a hot topic in global anticancer 
drug research [82]. According to the research conclusions 
of Huang et al. [65], the overexpression of FGFR family is 
closely related to abnormal glucose metabolism in can-
cer. Therefore, we chose FGFR4 as our research subject to 
explore the metabolic reprogramming induced by FGFR4 
activated by HDAC inhibitors in TNBC, thus sensitiz-
ing the response to metformin. Our study is the first to 
propose that the feedback activation of the FGFR4-JAK-
STAT pathway may be one of the reasons for the poor 
efficacy of SAHA in TNBC. This phenomenon appears in 
TNBC rather than in other breast cancer subtypes. Our 
research also shows that this resistance can be reversed 
by metformin.

In this study, metformin demonstrates a stronger effect 
than FGFR4 knockdown in inhibiting SAHA-induced 
glycolysis (Fig.  4C, D). This difference may stem from 
metformin’s direct regulation of metabolism via the 
AMPK pathway, which significantly suppresses glycoly-
sis in cancer cells. In contrast, FGFR4 knockdown likely 

impacts glycolysis indirectly through the FGFR4-JAK-
STAT pathway, resulting in a milder effect. Addition-
ally, the role of FGFR4 may vary across different tumor 
types or cell contexts, which could explain why its impact 
on glycolysis inhibition is less pronounced than that of 
metformin.

Despite in  vitro experiments demonstrating signifi-
cant enhancement of anticancer effects by metformin, its 
translational value in clinical cancer treatment remains 
unclear. Recent prospective clinical trials targeting met-
formin for breast cancer treatment have not achieved 
significant results [83, 84], indicating that questions 
regarding the use of metformin alone or in combination 
and its applicability to specific breast cancer subtypes 
remain of significant research value. Our study focuses 
on the theme of ‘repurposing old drugs,’ specifically met-
formin. Although not the trendiest research topic, there 
is still vast potential for exploring how to enhance its 
anti-tumor efficacy.

In this study, by leveraging computational methods 
(CMap, DTsyn, and DrugComb) and bioinformatics pre-
dictions, we explored a combination treatment approach 
of HDAC inhibitors and metformin. We clarified how 
SAHA-induced FGFR4 activation prompts TNBC to 
undergo metabolic reprogramming, subsequently sen-
sitizing TNBC to metformin. Ultimately, our research 
offers a potential treatment method for advanced breast 
cancer patients, particularly those with FGFR-activated 
TNBC.

Conclusions
Our research demonstrates that metformin, in combina-
tion with the HDAC inhibitor SAHA, offers a novel and 
effective treatment strategy for triple-negative breast 
cancer (TNBC), showcasing significant advances in tar-
geting this challenging cancer subtype through drug 
repurposing and mechanistic innovation.
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sequencing results of 1462 breast cancer patients (5 cohorts) were dis-
played. The scatter plot in the upper-left corner compared the expression 
levels of HDAC10 in tumor tissues versus normal tissues. The remaining 
subplots analyzed survival differences between patients with high/low 
HDAC10 expression groups across different cohorts (GSE9893, GSE61304, 
GSE42568, GSE22219, and TCGA-BRCA) using Kaplan-Meier curves, 

https://doi.org/10.1186/s12929-025-01129-7
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covering endpoints such as overall survival (OS), disease-free survival 
(DFS), relapse-free survival (RFS), and progression-free survival (PFS). The 
p-values from the log-rank test were also annotated. Fig. S3. Combina-
tion Efficacy of SAHA and Metformin in TNBC Cell Lines. A, The IC50 
curves for SAHA (purple curve) and metformin (orange curve) were 
shown. The left panel displayed the percentage inhibition (%), while the 
right panel presented the combination index (CI) at each drug concen-
tration. MDA-MB-231 cells were treated with SAHA, metformin, or both 
at the indicated concentrations. B, The IC50 curves for SAHA (purple 
curve) and metformin (orange curve) were shown. The left panel dis-
played the percentage inhibition (%), while the right panel presented 
the combination index (CI) at each drug concentration. Hs578T cells 
were treated with SAHA, metformin, or both at the indicated concen-
trations. Fig. S4. Colony formation and quantification of MDA-MB-231 
cells treated with SAHA, metformin, and combinations. The formed 
colonies and quantification of MDA-MB-231 cells treated with different 
concentrations of SAHA (0, 0.125, 0.25, 0.5, or 1 μM), metformin (0, 2 
or 4 mM), or their combinations were displayed (in three replicates). 
Fig. S5. We analyzed differential gene expression, enrichment, and 
membrane receptor intersections for SAHA and metformin treatments. 
A, GO-KEGG enrichment analysis of differentially expressed genes 
(p-value < 0.05 and |Log2FoldChange| > 1) between the SAHA-treated 
group and the control group. B, Venn diagram showing the intersection 
of differentially expressed genes between the SAHA-treated group and 
the control group with membrane receptor genes. C, Heatmap display-
ing the intersection of differentially expressed genes between the 
SAHA-treated group and the control group with membrane receptor 
genes. D, Volcano plot of the differential expression analysis between 
the SAHA-treated group and the control group (p-value < 0.05 and 
|Log2FoldChange| > 1). E, GO-KEGG enrichment analysis of differentially 
expressed genes (p-value < 0.05 and |Log2FoldChange| > 0.8) between 
the Metformin-treated group and the control group. F, Venn diagram 
showing the intersection of differentially expressed genes between 
the Metformin-treated group and the control group with membrane 
receptor genes. G, Heatmap displaying the intersection of differen-
tially expressed genes between the Metformin-treated group and the 
control group with membrane receptor genes. H, Volcano plot of the 
differential expression analysis between the Metformin-treated group 
and the control group (p-value < 0.05 and |Log2FoldChange| > 0.8). 
Fig. S6. Protein quantification data from Fig. 3. A, Protein quantification 
from Fig. 3C showing changes in FGFR4 and STAT3 phosphorylation. 
MDA-MB-231 cells pretreated with JQ1 for 24 hours were exposed to 
SAHA for an additional 12 hours. FGFR4 and STAT3 phosphorylation 
changes were detected by immunoblotting. All bands were quantified 
from experiments repeated three times. B, Protein quantification from 
Fig. 3F showing changes in FGFR4 and STAT3 phosphorylation. (Left) 
MDA-MB-231 cells were treated with the indicated concentrations 
of SAHA (0, 5, 10 μM) for 12 hours. (Middle) MDA-MB-231 cells were 
treated with the indicated concentrations of metformin (0, 10, 20, 40 
mM) for 48 hours. (Right) MDA-MB-231 cells pretreated with metformin 
(20 mM) for 36 hours were exposed to SAHA (5 μM) for an additional 12 
hours. FGFR4 and STAT3 phosphorylation changes were detected by 
immunoblotting. All bands were quantified from experiments repeated 
three times. Fig. S7. We introduced FGFR4 siRNA with SAHA and over-
expressed FGFR4 with metformin to observe apoptosis, proliferation, 
and protein changes. A, Cell apoptosis and growth assays. MDA-MB-231 
cells were transfected with non-targeting control (NC) or FGFR4 
siRNAs for 48 hours, followed by SAHA treatment for an additional 
24 hours for apoptosis analysis, and 72 hours for cell growth analysis. 
B, Immunoblotting and protein quantification of FGFR4 and MCL-1 
change. MDA-MB-231 cells pretreated with non-targeting control (NC) 
or FGFR4 siRNAs for 48 hours, followed by SAHA (5μM) treatment for 
an additional 24 hours for Immunoblotting. FGFR4 and MCL-1 change 
was detected by immunoblotting. All the bands were quantified from 
experiments repeated three times. C, Cell apoptosis and growth assays. 
MDA-MB-231 cells were transfected with control or FGFR4 plasmid 
for 48 hours, followed by metformin treatment for an additional 48 
hours for apoptosis analysis, and 72 hours for cell growth analysis. 
D, Immunoblotting and protein quantification of FGFR4 and MCL-1 
change. MDA-MB-231 cells pretreated with control or FGFR4 plasmid 

for 48h, followed by metformin (20mM) treatment for an additional 48 
hours for Immunoblotting. FGFR4 and MCL-1 change was detected 
by immunoblotting. All the bands were quantified from experiments 
repeated three times. Fig. S8. Cell apoptosis analysis shown in Fig. S7, 
performed in triplicates. Fig. S9. Multidimensional analysis of FGFR4 gene 
necessity, expression profiles, and prognostic impact in pan-cancer and 
breast cancer. A, DepMap database CRISPR-Cas9 whole-genome screen-
ing results: Displaying the top 200 pan-cancer cell lines ranked by FGFR4 
CERES scores, reflecting the importance of FGFR4 for cell survival. B, FGFR4 
expression levels across various cancer types: Comparison between tumor 
and normal tissues. C, Association analysis between FGFR4 expression and 
various clinical features: Including PR status, ER status, HER2 status, PAM50, 
Pathologic T stage, Pathologic N stage, Pathologic M stage, Pathologic 
stage, Age, Race, Menopause status, and Histological type. D, Correlation 
between FGFR4 expression levels and disease-specific survival (DSS) in 
breast cancer patients (TCGA-BRCA dataset). E, Relationship between 
FGFR4 expression levels and disease-free survival (DFS) in breast cancer 
patients (GSE21653 dataset). F, Association between FGFR4 expression 
levels and relapse-free survival (RFS) in breast cancer patients (GSE9893 
dataset). G, Correlation between FGFR4 expression levels and relapse-free 
survival (RFS) in breast cancer patients (GSE22219 dataset). H-J, Compari-
son of FGFR4, SLC2A1, and LDHA gene expression between cancer and 
normal tissues. K, Differential expression of PFKL gene between high and 
low FGFR4 expression groups. L, Differential expression of SLC2A1 gene 
between high and low FGFR4 expression groups. Fig. S10. We quantified 
intratumoral molecular changes using randomly selected visual fields and 
immunohistochemical metrics. Three visual fields were randomly selected 
from each group after immunohistochemistry, and the molecular changes 
shown in Fig. 5 were quantified using two immunohistochemical metrics. 

Supplementary Material 2: Table S1. Acronym and Full Name. Table S2. 
SgRNA Sequences of Genes in the CDTSL Library. Table S3. MAGeCK nega-
tive P-values for Day 14 CDTSL vs. Day 0, Day 14 CDTSL(+Met) vs. Day 0, 
Day 14 CDTSL(+Met) vs. Day 14 CDTSL, and the list of 67 metformin-sensi-
tizing genes identified through the three-step screening strategy. Table S4. 
RNA-seq counts for SAHA vs Ctrl, Metformin vs Ctrl, and Combination vs 
SAHA. Table S5. Differential analysis results of SAHA vs Control. Table S6. 
Differential analysis results of Metformin vs Control. Table S7. Differen-
tial analysis results of SAHA combined with Metformin vs SAHA alone. 
Table S8. List of Primers Used for ChIP-qPCR, qPCR, Overexpression, and 
siRNA Experiments. Table S9. CMap analysis of the gene expression profile 
in metformin-treated cells assessed whether SAHA (Vorinostat) is a highly 
sensitive drug after metformin treatment. Table S10. 129 intersection 
genes between upregulated genes after SAHA treatment and downregu-
lated genes after Metformin treatment.
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