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Abstract 

Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-chang-
ing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein 
synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeosta-
sis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabo-
lism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA 
metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we 
describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic 
reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these 
pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations 
into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progres-
sion can enhance our understanding of the relationship between metabolism and cancer and provide new strategies 
for cancer therapy.

Keywords BCAA metabolism, Metabolic reprogramming, Tumour progression, Tumour resistance, Tumour immunity, 
mTORC signalling pathway

Introduction
The initiation and progression of tumours depend on the 
reprogramming of cellular energy metabolism [1]. The 
phenomenon of metabolic reprogramming in tumorigen-
esis can be attributed to the need for rapid growth and 
adaptation of tumour cells to the immune microenviron-
ment. First, tumour cells are characterized by continuous 

growth, unlimited proliferation, and invasion into normal 
tissues. To meet their ever-increasing nutritional and 
biosynthetic demands, the metabolic pathways providing 
energy and other molecules to tumour cells are adaptively 
adjusted [2]. Second, tumour cells often need to adapt 
to hypoxic environments, maintain redox homeostasis, 
and evade immune surveillance. Metabolic reprogram-
ming assists tumour cells in adapting to their dynamic 
microenvironment to sustain survival. Although disrup-
tion of glucose metabolism, represented by the Warburg 
effect, is the main feature of metabolic reprogramming 
[3], altered amino acid metabolism, lipid metabolism, 
and nucleotide metabolism also have crucial functions in 
tumour development [4].

Amino acids are essential for cellular survival, serving 
as the raw materials for protein synthesis and providing 
a source of energy and metabolites. Amino acid metab-
olism is promoted in tumour cells, as the breakdown of 
these molecules provides both nitrogen and carbon to 
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meet the requirements for rapid growth [5]. Branched-
chain amino acids (BCAAs), a class of essential amino 
acids, include leucine, isoleucine, and valine. They are 
recognized as critical components that support the sur-
vival, growth, proliferation, migration, and invasion of 
tumour cells. Alterations in BCAA metabolism can influ-
ence various tumour phenotypes and serve as markers for 
assessing tumour prognosis [6, 7]. Diverse tumour types 
or the same tumour under different conditions exhibit 
variations in the demand for BCAA metabolism, which 
is dependent primarily on the intensity of BCAA catab-
olism. This is reflected by changes in circulating BCAA 
levels and the activity and expression of related enzymes 
[8–10]. In addition, dysregulation of BCAA metabolism 
drives tumour drug resistance, immune escape or anti-
tumour immunity and is an important feature of tumo-
rigenesis and progression [11–15]. This review focuses 
on the role of BCAA metabolism reprogramming in 
the development of different tumours and how it drives 
anti-tumor immune response and treatment resistance, 
primarily in cancer types with high morbidity and mor-
tality rates, including lung cancer [10, 11, 16], liver cancer 
[17–19], breast cancer (BC) [15, 20–23], colorectal can-
cer (CRC) [12, 24–27], leukaemia [28–34], glioblastoma 
[35–39], pancreatic ductal adenocarcinoma [40–44], and 
ovarian cancer [9, 45, 46].

Branched‑chain amino acid metabolic network 
and its reprogramming in tumour cells
Branched-chain amino acids (BCAAs), comprising leu-
cine (Leu), isoleucine (Ile), and valine (Val), are a class 
of essential amino acids that cannot be synthesized by 
mammals themselves and must therefore be acquired 
through dietary intake and protein degradation [47]. 
Under physiological conditions, precisely maintain-
ing the balance between the intake and consumption of 
branched-chain amino acids is crucial at both the cellular 
and systemic physiological levels; this balance involves 
nutrient absorption, metabolic regulation, and associated 
biochemical pathways [48]. Imbalances in the intake and/
or breakdown of BCAA metabolism may lead to defi-
ciencies or excessive accumulation, thereby predisposing 
individuals to various diseases, including diabetes [49, 
50], heart failure [51, 52], and cancer [53]. Hence, pre-
cise regulation of this balance is crucial for maintaining 
the normal physiological state of animals and ensuring 
proper biological functions.

The intake of BCAAs
The L-type amino acid transporter (LAT) family of trans-
membrane transport proteins serves as the main path-
way for BCAA entry into the cytoplasm. The LAT family 
consists of four neutral amino acid transporters, namely, 

LAT1 (SLC7A5), LAT2 (SLC7A8), LAT3 (SLC43A1), and 
LAT4 (SLC43A2). Among them, LAT1 is the main BCAA 
transporter and plays a key role in the reprogramming 
of BCAA metabolism in tumour cells [54]. LAT1 is the 
major amino acid transporter that supports the develop-
ment of hepatocellular carcinoma (HCC). Knockdown 
of LAT1 attenuates BCAA transport activity and signifi-
cantly reduces HCC cell proliferation [53]. In addition, 
high expression of LAT1 in breast cancer cells increases 
leucine uptake, leading to tamoxifen resistance in 
patients and significantly shortening their survival time 
[20, 55]. Furthermore, the overexpression of G protein-
coupled receptor family C group 5 member C (GPRC5C) 
activates the NF-κB-LAT1 axis, which increases the con-
centration of circulating BCAAs and enhances BCAA 
catabolism, thereby increasing the energy supply through 
the tricarboxylic acid (TCA) cycle. This ultimately leads 
to increased invasiveness of acute myeloid leukaemia 
(AML) cells [34]. Notably, the LAT1 inhibitor JPH203 has 
progressed into phase I clinical trials [56]; it specifically 
targets LAT1 to inhibit the proliferation of advanced 
solid tumours and improve prognosis [56, 57].

BCAA catabolism
The catabolic metabolism of BCAAs primarily comprises 
two major steps, namely, BCAA transamination and 
branched-chain keto acid oxidation decarboxylation. 
Branched-chain aminotransferases (BCATs) reversibly 
transfer α-amino groups from BCAAs to α-ketoglutaric 
acid (α-KG), generating the corresponding branched-
chain α-keto acids (BCKAs) and glutamate. 
BCATs include two isoenzymes: branched-chain 
aminotransferase 1 (BCAT1), which is present in the 
cytosol and is predominantly expressed in limited 
tissues such as the brain and kidneys, and mitochondrial 
branched-chain aminotransferase 2 (BCAT2), which is 
widely expressed in various tissues except for the liver 
[58]. In the cytoplasm, BCAAs are used for protein 
synthesis or reversible transamination under the catalysis 
of BCATs. However, after entering the mitochondria 
via SLC25A44, BCKAs produced by BCAAs can be 
further oxidized to the end products acetyl-CoA and/
or succinyl-CoA to enter the tricarboxylic acid cycle, in 
addition to being re-ammoniated [59]. The Branched-
chain alpha-ketoate dehydrogenase (BCKDH) complex, 
located in the inner mitochondrial membrane, is the 
first key rate-limiting enzyme in BCAA catabolism 
and irreversibly decarboxylates branched-chain alpha-
ketoate dehydrogenase (BCKDH). Notably, the BCKDH 
enzyme consists of three subunits (E1, E2, and E3) [58], 
of which the E1 subunit is a decarboxylase encoded by 
the BCKDHA (E1α) and BCKDHB genes [48] and is 
capable of catalysing the oxidative decarboxylation of 
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BCKAs to produce the corresponding acyl intermediate 
while releasing carbon dioxide. The activity of the 
BCKDH complex is regulated by posttranslational 
covalent modifications involving the phosphorylation of 
the E1α subunit. BCKD kinase (BCKDK) phosphorylates 
the E1α subunit of BCKDHA, leading to its inactivation. 
Conversely, the mitochondrial-targeted protein 
phosphatase  Mg2+ and  Mn2+-dependent 1K (PPM1K) 

then dephosphorylates the E1α subunit of BCKDHA to 
reactivate the complex [60] (Fig. 1).

BCAA metabolism and other essential amino acids
Essential amino acids not only serve as fundamental 
building blocks for constructing substances necessary 
for life but also function as signalling molecules 
capable of initiating biosynthesis or participating in 
the regulation of cellular life processes. For example, 

Fig. 1 BCAA metabolism and tumours. BCAAs (leucine, isoleucine, valine) are transported into the cell by LAT1 and catalysed by BCAT1 to produce 
BCKAs in the cytoplasm. After entering the mitochondria through the SLC25A44 transporter, BCKAs can be catalysed by BCAT2 for transamination 
and then undergo irreversible oxidative decarboxylation to generate branchchain acyl coenzymes through BCKDH, and then generate acetyl-CoA 
and succinyl-coenzyme A through a series of pathways to enter the TCA cycle for functional production. The activity of BCKDH is regulated 
by BCKDK and PPM1K. The phosphorylation of BCKDH by BCKDK inhibits BCKDH activity, whereas PPM1K dephosphorylates BCKDH and activates 
BCKDH. Elevated levels of LAT1-mediated BCAAs lead to the proliferation of HCC cells and drug resistance in breast cancer patients. GPRC5C 
increases the aggressiveness of AML through the NF-κB-LAT1. The LAT1 inhibitor JPH203.The BCAT1 inhibitor EB and WQQ-345. The BCAT2 inhibitor 
2-Aryl Benzimidazole
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methionine is involved primarily in biological processes 
such as polyamine biosynthesis, DNA methylation, 
and the formation of glutathione [61]. Dysregulation 
of tryptophan metabolism mainly promotes tumour 
growth and immune evasion by suppressing the tumour 
immune microenvironment [62]. Threonine is an 
important substrate for the tRNA modification enzyme 
YrdC N(6)-threonylcarbamoyl transferase domain 
containing (YRDC), and it promotes the self-renewal 
ability of glioblastoma stem cells by maintaining a high 
rate of translation [63]. BCAAs are the second largest 
nitrogen source in cells after glutamine, accounting 
for 35% of the essential amino acids in muscle protein 
and 50% in food. Studies have shown that BCAAs are 
essential for maintaining the survival of HCC cells 
under glutamine deprivation conditions [17]. BCAAs 
and their metabolites can act as signalling cofactors to 
alter the epigenome, regulate the cellular redox state, 
and affect immune cell function. However, in contrast to 
other essential amino acids in tumours, BCAAs activate 
tmainly the mammalian target of the rapamycin (mTOR) 
signalling pathway to exert a series of oncogenic effects.

Mechanisms by which BCAA metabolic 
reprogramming mediates tumour progression
To date, numerous studies have elucidated the associa-
tions between disruptions in BCAA metabolism and var-
ious phenotypes in tumours, including lung cancer [10, 
11, 16], hepatocellular carcinoma [17–19, 64], breast can-
cer [15, 20–23], colorectal cancer (CRC) [12, 24–27], leu-
kaemia [28–34], glioblastoma [35–39], pancreatic ductal 
adenocarcinoma [40–44], and ovarian cancer [9, 45, 46]. 
However, how BCAA metabolism is dysregulated differs 
depending on tumour types. Different tumours exhibit 
distinct metabolic patterns, which are primarily classi-
fied into two categories: (1) decreased BCAA metabolism 
leads to the accumulation of BCAAs, which in turn acti-
vates the mTOR signalling pathway [22, 65–67] and (2) 
enhanced BCAA uptake and catabolism provides inter-
mediates for other pathways and mediates epigenetic 
regulation [66–68]. The core feature of BCAA metabo-
lism dysregulation is the abnormal activation of meta-
bolic enzymes/pathways/metabolites within the BCAA 
catabolism pathway.

BCAA hypocatabolism promotes tumour development
The first step in BCAA catabolism is an increase in 
BCKAs reverse response or a decrease in BCAA 
catabolism, resulting in increased BCAA levels in 
plasma and tumour tissue, which is closely related to 
tumour formation and progression. Specifically, higher 
circulating levels of total BCAAs, isoleucine, leucine, and 
valine have a significant causal relationship with the risk 

of developing squamous cell lung cancer [69]. Plasma 
BCAA concentrations are significantly elevated in 
hepatocellular carcinoma (HCC) patients and have been 
identified as biomarkers for this disease [70]. Elevated 
BCAA levels are associated with an increased risk of 
mortality in CRC patients and more than double the risk 
of developing pancreatic cancer [42, 71]. Furthermore, in 
pancreatic ductal adenocarcinoma (PDAC) cells, BCAAs 
can be used as a carbon source to induce lipid synthesis, 
fulfilling the need for the rapid biomembrane synthesis 
required for tumour cell proliferation [72]. Elevated 
levels of BCAAs have been observed in the plasma of 
breast cancer patients. Compared with those in adjacent 
normal tissues, the level of BCAAs and the expression 
level of BCAT1 in cancer tissues are also greater [73], 
suggesting that the increase in BCAAs levels may be 
due to the readjustment of the expression and activity 
of metabolic enzymes involved in the BCAA metabolic 
pathway (Fig. 2).

Activation of the mTORC1 signalling pathway
mTORC1 and AMP-activated protein kinase (AMPK) 
signalling pathways are major intracellular energy 
sensing mechanisms. The activation of mTORC1 
requires the stimulation of nutrients and growth factors 
to promote cell growth and regulate the synthesis of 
proteins, nucleotides and lipids, as well as the processes 
of autophagy and angiogenesis [74, 75]. Moreover, the 
mTORC pathway serves as a crucial regulator of cellular 
immune function and is involved in the activation, 
differentiation and metabolism of T cells [76, 77]. AMPK 
is activated under nutrient deficiency conditions and 
responds to energy stress by inhibiting cell growth and 
biosynthesis processes. In part, it inhibits the mTORC 
signalling pathway by promoting BCAA catabolism [78, 
79]. Therefore, when exploring the impact of BCAA 
metabolic reprogramming on cancer, we cannot overlook 
the pivotal role of the mTORC1 signalling pathway in its 
regulation. Recent studies revealed that leucine affects 
the activity of mTORC in colorectal cancer (CRC) by 
regulating the ubiquitination status of Sestrin2. When 
leucine is scarce, the E3 ubiquitin ligase RING finger 
protein 167 (RNF167) catalyses Sestrin2 ubiquitination, 
promotes Sestrin2 interaction with GATOR2, and 
inhibits mTORC1 signalling. When leucine is sufficient, 
STAM-binding-protein-like 1 (STAMBPL) removes the 
ubiquitin chain on Sestrin2 and activates the mTORC1 
signal [80]. In addition, when leucine uptake is reduced 
or energy production is reduced due to catabolism 
obstruction, mTORC activity is inhibited by regulating 
the AMPK signalling pathway [81]. Studies have shown 
that AMPK directly phosphorylates Raptor to inhibit 
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its activity, which is necessary for energy stress-induced 
mTORC1 inhibition and tumorigenesis [79].

Importantly the accumulation of BCAAs may be due 
to increased expression of BCATs, and elevated levels 
of the substrates BCKAs and glutamate promote the 
reverse reaction of BCAA metabolism. Studies have 
shown that zeste homolog 2 (EZH2), an enzymatic 
subunit of the polycomb repressive complex 2 (PRC2), 

can epigenetically silence BCAT1 during normal 
haematopoiesis [66]. Activation of the NRAS gene 
G12D mutation promotes the conversion of glutamine 
to glutamate [66]. EZH2 deficiency leads to BCAT1 
reactivation in combination with  NRASG12D to promote 
the BCAT1-catalysed conversion of BCKAs to BCAAs. 
This maintains high intracellular levels of BCAAs, 
thereby promoting mTORC1 signalling and inducing 

Fig. 2 BCAA hypocatabolism promotes tumour development. Leucine affects mTORC activity by regulating the ubiquitination state of Sestrin2. 
BCAA accumulation promotes the progression of hepatocellular carcinoma, colorectal cancer, non-small cell lung cancer, and leukaemia 
by activating the mTORC signalling pathway. EZH2, MSI2 and  NARSG12D are involved in regulating the expression of BCAT1, which leads 
to an increase in the catabolic reverse reaction of BCAAs and then promotes the activation of mTORC. The downregulation of BCAT2, BCKDHA 
and BCKDHB led to a reduction in BCAA catabolism and promotes the activation of mTORC. Deletion of PPM1K leads to BCAA accumulation 
by increasing the ubiquitination of MEIS1 and p21, damaging the dry nature of HSCs and LICs and leading to leukaemia. In addition, BCAA 
accumulation promotes ROS production through the PI3K/AKT signalling pathway, leading to mitochondrial dysfunction. BCAA accumulation 
caused by the overexpression of BCKDK may protect NSCLC cells by maintaining glycolysis and reducing ROS accumulation
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the transformation of myeloproliferative neoplasms into 
leukaemia [66]. Additionally, another study reported 
that the ability to catabolize BCAAs to BCKAs was also 
reduced in chronic myeloid leukaemia (CML) patients. 
The oncogenic RNA-binding protein Musashi2 (MSI2) 
promotes the reamination of BCKAs to BCAAs by 
upregulating BCAT1 expression at the translational level, 
thereby activating the mTORC1 signalling pathway and 
driving the malignant progression of CML [67].

In addition, the accumulation of BCAAs may also 
result from decreased expression of enzymes involved in 
BCAA catabolism, leading to attenuated BCAA catabo-
lism. Compared with those in normal tissues, BCAT2 
mRNA and protein levels in tumour tissues of colorectal 
cancer patients were reduced. Downregulation of BCAT2 
expression leads to the accumulation of BCAAs, activa-
tion of the mTORC1 signalling pathway, and promotion 
of CRC tumorigenesis [27]. Furthermore, downregula-
tion of BCKDH complex expression in hepatocellular 
carcinoma (HCC) tumour tissues leads to the accumula-
tion of BCAAs, thereby activating the mTORC1 signal-
ling pathway and promoting tumour cell growth [65]. 
Another study revealed that the downregulation of 
BCKDHA expression attenuates BCAA catabolism and 
promotes tumour proliferation by promoting the Rab1A-
mTORC1 signalling pathway in non-small cell lung can-
cer (NSCLC) [82]. Among the key factors in this process, 
Rab1A is a small GTPase that regulates the mTORC1 
signalling pathway in cells through amino acid signalling 
[83]. Defects in the LKB1-AMPK axis activate Prospero-
related homeobox  1 (PROX1), inhibit the expression of 
BCAA catabolic genes such as BCKDHB, and maintain 
the BCAA pool to activate mTORC, leading to the devel-
opment and invasion of HCC [84].

Epigenetic remodelling
Abnormal epigenetic regulation may result in the modu-
lation of cellular metabolic pathways, thereby affecting 
intracellular energy production and utilization, as well 
as signalling pathway selection [85]. However, reduced 
BCAA catabolism can also induce epigenetic remodel-
ling and promote tumour progression. The elevation of 
BCAA levels caused by PPM1K deficiency-mediated 
dysfunction of BCKDH upregulates E3 ubiquitin ligase 
member cell division cycle 20  (CDC20), which in turn 
mediates the ubiquitination of MEIS1 and p21. This 
process suppresses glycolysis and quiescence in haemat-
opoietic stem cells (HSCs) and leukaemia-initiating cells 
(LICs), thereby impairing their stemness and inhibiting 
the development of leukaemia [31].

Regulation of oxidative stress
Elevated levels of BCAAs can modulate intracellular 
oxidative stress. Research has shown that increased 
levels of BCAAs in peripheral blood mononuclear cells 
promote the production of mitochondrial reactive oxygen 
species (ROS) by activating the PI3K/Akt signalling 
pathway, leading to mitochondrial dysfunction [86]. 
However, the overexpression of BCKDK not only leads to 
the accumulation of BCAAs, but also enables citric acid 
to generate acetyl-CoA and oxaloacetic acid by regulating 
ATP-citrate lyase (ACLY) activity. Together, these two 
aspects maintain glycolysis, reduce ROS accumulation, 
and protect NSCLC cells from apoptosis [10, 87].

BCAA hypercatabolism promotes tumour development
In contrast to the low BCAA catabolism-mediated 
promotion of tumour progression described above, 
some tumour cells exhibit increased BCAA catabolism 
to meet their energy and growth demands. For example, 
under glutamine deprivation conditions, increased 
BCAA catabolism aids the survival of liver cancer cells 
[17]. Additionally, increased BCAA catabolism leads 
to a decrease in the intermediate metabolite α-KG 
and an increase in glutamate. Changes in intermediate 
metabolites not only impact cellular energy metabolism 
but also promote tumorigenesis at the molecular level 
by participating in epigenetic regulation and modulating 
oxidative stress (Fig. 3).

Epigenetic remodelling
BCATs not only control the relative expression levels 
of BCAAs and BCKAs but also regulate the balance 
between intracellular α-ketoglutarate (α-KG) levels. 
α-KG not only serves as an intermediate metabolite 
in the tricarboxylic acid cycle but also acts as a 
rate-limiting substrate for the α-KG-dependent 
dioxygenase family. These enzymes play crucial roles 
in hypoxic signal transduction, maintaining cellular 
redox homeostasis, and epigenetic modifications [88]. 
Dysregulation of α-KG levels leading to histone and 
DNA methylation has been demonstrated to facilitate 
malignant progression in glioblastoma and acute 
myeloid leukaemia [33, 36]. The overexpression of 
BCAT1 depletes α-KG and is closely associated with 
the upregulation of sex-determining region Y-box  2 
(SOX2) [16]. SOX2, an important transcription factor 
for maintaining cancer stem cell (CSC) plasticity, plays 
a crucial role in regulating stemness and promoting 
the metastasis of lung cancer and glioblastoma cells 
[89]. BCAT1-mediated reduction in α-KG levels can 
increase promoter methylation of the miR-200c gene, 
thereby promoting SOX2 expression and leading 
to the metastasis of lung cancer cells [16]. Other 
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studies have shown that reducing α-KG levels can 
hinder the degradation of HIF1α via α-KG-dependent 
dioxygenases such as the Egl-9 family of hypoxia-
inducing factor 1 (EGLN1), thus maintaining leukaemia 
cell growth and survival [33]. Furthermore, in isocitrate 
dehydrogenase (IDH)-mutant glioblastomas (GBMs), 
BCAT1 expression is significantly suppressed, possibly 
because of the pattern of α-KG-mediated BCAT1 

methylation [35]. IDH mutations reduce α-KG to the 
oncometabolite 2-hydroxyglutaric acid (2-HG) [90]. 
Since α-KG is a necessary cofactor for TET DNA 
demethylases [36, 91], the competitive inhibition of 
these enzymes by 2-HG results in high methylation of 
the BCAT1 promoter in IDH-mutant GBM [92]. These 
expression trends are similar to those observed in IDH-
mutant acute myeloid leukaemia [93]. In contrast, 

Fig. 3 BCAA hypercatabolism promotes tumour development. BCAA metabolism maintains PRC2 activity by promoting the transcription of EZH2 
and EED, thereby maintaining the dryness of acute leukaemia. High expression levels of BCAT1 lead to a decrease in α-KG levels, and promote 
the occurrence and development of leukaemia and lung cancer through epigenetic remodelling of the EGLN1-HIF1α axis, KDM4A/C-ATM axis 
and miR-200c-SOX2 axis. The BCAA-GCN2-EIF2α axis and the KRAS-SYK axis promote the development of pancreatic ductal adenocarcinoma 
by stabilizing BCAT2 and enhancing BCAA catabolism. On the one hand, ROS promotes the transcription of BCAT1 by activating HIF1; on the other 
hand, it up-regulates the expression of BCAT1 through the LDHA-DOT1L axis to increase the catabolism of BCAAs, resulting in an increase 
in the levels of the glutamate-derived antioxidants GSH and TxN, and maintaining the redox state of glioblastoma
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in GBM cells with wild-type (WT) IDH, BCAT1 
overexpression promotes tumour cell proliferation by 
enhancing BCAA metabolism and increases neurotoxic 
damage to peripheral neurons by promoting glutamate 
efflux [35]. Moreover, recent studies have revealed 
that in AML, high expression levels of BCAT1 reduce 
intracellular α-KG levels and increase H3K9me3 
levels by decreasing KDM4A/KDM4C histone lysine 
demethylase activity, thus suppressing the function of 
the important DNA damage repair molecule ataxia-
telangiectasia mutated protein (ATM) and increasing 
the sensitivity of cells to the polyadenosine diphosphate 
ribose polymerase (PARP) inhibitor BMN673 [94].

In addition, research has shown that PDAC cells are 
highly dependent on the BCAA catabolic pathway. 
In pancreatic acinar cells driven by KRAS gene 
mutations, increased levels of histone acetylation 
leading to acinar-to-ductal metaplasia (ADM) are 
associated with elevated levels of acetyl-CoA, with 
leucine being the primary source of acetyl-CoA [95]. 
BCAT2 is upregulated in pancreatic intraepithelial 
neoplasia ductal cells [41, 68], subsequently affecting 
the concentration of acetyl-CoA derived from BCAAs 
[68]. Another study reported that KRAS suppresses 
the phosphorylation of BCAT2 induced by spleen 
tyrosine kinase (SYK), reducing the binding of BCAT2 
to the E3 ligase tripartite motif-containing protein 
21(TRIM21). This results in decreased ubiquitination 
of BCAT2, thereby maintaining BCAA catabolism and 
mitochondrial respiration, which in turn promotes the 
malignant transformation of PDAC cells [68]. High 
concentrations of BCAA increase the translation of 
ubiquitin-specific peptidase 1 (USP1) by inhibiting 
the GCN2-eIF2α signalling pathway, and USP1 in turn 
deubiquitinates BCAT2 at the K229 site to stabilize its 
protein expression, leading to increased catabolism 
of BCAAs to promote PDAC cell proliferation [41]. 
Additionally, BCAA metabolism promotes the 
transcription of the PRC2 components EZH2 and 

embryonic ectoderm development (EED), maintaining 
the activity of the general epigenetic regulator PRC2, 
which is crucial for the maintenance of stem cell 
characteristics. PRC2 maintains the expression of 
stem cell-related genes in human AML and acute 
lymphoblastic leukaemia (ALL) cells to promote 
tumour progression by catalysing H3K27me3 of target 
genes [28, 96].

Regulation of oxidative stress
The accumulation of ROS is usually detrimental to 
tumour cell growth; therefore, tumour cells need to 
upregulate the expression of various antioxidants to 
maintain redox homeostasis. Glutamate is a major source 
of the antioxidants GSH and thioredoxin (TxN) [97]. It 
has been shown that ROS-activated hypoxia-inducible 
factor-1 (HIF-1) can bind to the hypoxia response ele-
ment (HRE) within the first intron of the BCAT1 gene 
and promote its transcription [98]. BCAT1 upregulation-
mediated reprogramming of BCAA metabolism is a criti-
cal mechanism for maintaining glutamate levels in GBM 
cells, supporting reductive metabolism and subsequently 
facilitating tumour cell proliferation, migration, and inva-
sion [37]. Additionally, recent studies have reported that 
ROS accumulation leads to the translocation of lactate 
dehydrogenase A (LDHA) to the nucleus, thereby pro-
moting histone H3K79 hypermethylation induced by the 
methyltransferase disruptor of telomeric silencing-1-like 
(DOT1L) [99]. Previous research has identified BCAT1 as 
a downstream effector molecule of DOT1L that mediates 
the stem cell-like characteristics and migratory capac-
ity of breast cancer cells [21]. In GBM, DOT1L upregu-
lates BCAT1 expression and enhances BCAA catabolism, 
leading to an increase in TxN indirectly derived from glu-
tamate to balance the redox state of GBM and promote 
tumour cell proliferation [99].

Table 1 BCAA metabolism and drug resistance in tumours

Chemotherapeutic Tumour type BCAA-metabolizing 
enzyme levels

Chemo-resistance mechanism References

Cisplatin Hepatocellular carcinoma BCAT1 upregulation Inhibition of mTORC signalling pathway to activate autophagy [19]

Carboplatin Epithelial ovarian cancer BCAT1 upregulation Upregulation of AKR1C1 expression and reduced accumulation 
of ROS

[9, 104]

TKI treatment Lung cancer BCAT1 upregulation Reduced accumulation of ROS [14]

Paclitaxel Epithelial ovarian cancer 
and breast cancer

BCKDK upregulation Enhancement of the mTORC1-Aurora pathway to promote 
mitosis in tumour cells

[46]

Tamoxifen Breast cancer SLC7A5 upregulation Increased leucine uptake mediates the adaptation of ERα+ 
breast cancer to nutritional stress

[20]
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BCAA metabolic reprogramming and tumour drug 
resistance and immunity
BCAA metabolism and drug resistance in tumours
Tumour drug resistance is a major obstacle to the 
effective treatment of cancer. Chemotherapeutic drugs 
usually work by inhibiting the proliferation of tumour 
cells, killing them or blocking their growth. However, 
most tumours initially respond to chemotherapy but 
eventually develop resistance to treatment. Studies 
have shown that the chemoresistance of certain tumour 
cells is associated with the reprogramming of BCAA 
metabolism (Table 1).

Studies have shown that the estrogen-E2-induced 
scaffold protein LLGL2 promotes SLC7A5 expression 
and increases leucine uptake by forming trimers with 
the leucine transporter SLC7A5 and the NSF attachment 
protein receptor family member YKT6 in the cytoplasm. 
This activity mediates the adaptation of ERα+ breast 
cancer to nutritional stress and resistance to tamoxifen 
treatment [20]. KMH-233 is a selective inhibitor of LAT1 
that effectively reduces the protein levels of mTOR in 
cancer cells. It can enhance the antiproliferative effects 
of cisplatin and phenylalanine in breast cancer cells 
by exerting their combined effects [100, 101]. BCAT1 
was found to be transcriptionally upregulated in HCC 
in response to the overexpression of the transcription 
factor c-Myc, which has been shown to promote the 
proliferation of liver cancer cells and reduce their 
sensitivity to cisplatin [64]. Mechanistically, cisplatin 
induces the upregulation of BCAT1 expression, leading 
to increased BCAA catabolism. This inhibits mTORC 
signalling, thereby activating autophagy and countering 
cisplatin-induced cell death [19]. Furthermore, studies 
have reported that BCAT1 upregulation is associated 

with adverse therapeutic responses to treatment with 
sublethal tyrosine kinase inhibitors (TKIs) in lung cancer 
cells with epidermal growth factor receptor (EGFR) 
mutations [14]. Mechanistically, the negative regulation 
of BCAT1 by H3K9 methylation is weakened, leading to 
increased glutamate synthesis. Concurrently, it enhances 
the synthesis of the crucial intracellular antioxidant 
GSH from glutamate via the glutamate-cysteine ligase 
catalytic subunit (GCLC), thereby eliminating ROS 
and mediating TKI resistance [14]. In addition, in 
epithelial ovarian cancer (EOC), knockdown of BCAT1 
can significantly suppress the expression of aldo–keto 
reductase family 1 member C1 (AKR1C1) [9]. Previous 
studies have clearly demonstrated that AKR1C1 induces 
carboplatin resistance in human EOC cells by reducing 
ROS accumulation [102]. In addition, BCKDK expression 
is upregulated in chemotherapy-resistant ovarian cancer 
and decreases the sensitivity of breast and ovarian cancer 
cells to paclitaxel [45, 46]. Inhibition of BCKDK or a 
reduction in BCAA levels can synergize with paclitaxel to 
impede tumour cell mitosis by inhibiting the mTORC1-
Aurora pathway [46]. Aurora is a mitotic kinase that 
functions in the assembly of spindles and centrosomes, 
as well as in the establishment of a spindle assembly 
checkpoint, ensuring proper operation of the spindle 
apparatus during mitosis and accurate segregation of 
chromosomes [103].Therefore, targeted therapy involvig 
BCAA uptake and metabolism-related proteins may 
increase tumour sensitivity to chemotherapy drugs.

BCAA metabolism and tumour immunity
BCAAs are essential nutrients required by immune cells 
during organ development, tissue homeostasis and the 

Table 2 BCAA metabolism and tumour immunity

Immune cell BCAA-metabolizing 
enzyme levels

Metabolite levels Biological function References

CD4+ T cell BCAT1 upregulation Decreased BCAA Inhibit T-cell differentiation [76]

Foxp3+ Treg cell Slc3A2 upregulation Decreased BCAA Maintain the proliferation and function of Treg cells [106]

CD8+ T cell N/A Decreased BCAA Mediate IFNγ-induced antitumour immunity [15]

BCAT1 upregulation N/A Inhibit  CD8+ T infiltration and participate in immunosuppression [108]

BCAT2 upregulation N/A Down-regulating the expression of chemokines associated with CD8 + T 
cells, reducing the chemotactic ability of  CD8+ T cells, and weakening 
the cytotoxic ability of CTL

[8]

B cell Slc7A5 upregulation Decreased leucine Activation of mTORC1 promotes B- cell differentiation and supports IgG 
and cytokine production

[109]

LARS B cell N/A Decreased leucine Promoting the expression of TGF-β1, leading to immunosuppressive TME 
and tumour escape

[12]

Macrophages BCAT1 downregulation N/A Downregulated the expression of immune-response gene IRG1 
and inhibited the proinflammatory function

[110, 111]

N/A Decreased BCKA Attenuated the phagocytosis activity of macrophages [39]
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immune response. In the tumour microenvironment, 
metabolic reprogramming profoundly affects the func-
tion of immune cells, and BCAA metabolic reprogram-
ming is a significant potential mechanism leading to 
impaired antitumour immune function [13]. The regula-
tory mechanisms of BCAA metabolic reprogramming 
and the effects of this reprogramming on the phenotype 
and function of tumour immune cells differ among vari-
ous immune cell subsets (Table 2).

T lymphocytes
Leucine-mediated activation of mTORC is a key regu-
lator of T-cell activation, differentiation and metabo-
lism [105]. TCR signalling upregulates the expression 
of BCAT1 in  CD4+ T cells, leading to increased BCAA 
transamination, which suppresses the mTORC signalling 
pathway and glycolysis rate, thereby inhibiting T-cell dif-
ferentiation [76]. Additionally, Slc3A2, which interacts 
with LAT1 to form a neutral amino acid transporter, is 
highly expressed in  Foxp3+ regulatory T (Treg) cells. 
It promotes the transport of BCAAs into Tregs, target-
ing the mTORC signalling pathway to maintain Treg cell 
proliferation and function [106]. BCAAs upregulate glu-
cose transporter 1 (Glu1) and increase glucose uptake by 
activating the PI3K/AKT/FOXO1 axis and the mTORC 
signalling pathway [11]. The expression of IFNγ and its 
differentiation into the effector state in  CD8+ T cells are 
glucose dependent [107], the accumulation of BCAAs in 
 CD8+ T cells enhances antitumour immunity in lung can-
cer xenograft mouse models by increasing glycolysis and 
oxidative phosphorylation [11]. BCAT1 is a downstream 
regulatory factor of interferon-gamma (IFNγ)-mediated 
CSC plasticity in breast cancer. IFNγ released by acti-
vated T cells not only promotes the transformation of 
non-CSCs to CSCs but also enhances the sphere forma-
tion capacity, resistance to radiotherapy and chemother-
apy, and the metastatic ability of CSCs. The combination 
of cancer immunotherapy with BCAT1 inhibitors can 
induce antitumour T-cell responses while blocking IFNγ-
induced immune escape [15]. Moreover, studies have 
reported that the accumulation of BCAAs increases the 
effector function of  CD8+ T cells and promotes antitu-
mour immunity by reprogramming glucose metabolism. 
Furthermore, knocking out BCAT1 may inhibit tumour 
growth by promoting the differentiation of glioblastoma 
cells and sustaining the continuous infiltration of  CD8+ 
T cells in the immune microenvironment [108]. Research 
indicates that BCAT2 can reduce the chemotactic ability 
of  CD8+ T cells and weaken the cytotoxicity of cytotoxic 
T lymphocytes (CTLs) by downregulating the expres-
sion of  CD8+ T-cell-associated chemokines, such as 
CCL3, CCL4, CCL5, CXCL9, and CXCL10. This process 
may contribute to the progression of bladder cancer. The 

combination of BCAT2 deletion and an anti-PD-1 anti-
body treatment effectively blocks tumour growth in vivo 
[8]. This finding suggested that the inhibition of BCAT2 
may enhance immunotherapeutic effects.

B lymphocytes
Leucine is transported into B cells via SLC7A5, activating 
mTORC1 to promote B-cell differentiation and support 
the production of IgG and cytokines [109]. Additionally, 
leucine can induce the generation of a B-cell subset that 
highly expresses leucine-tRNA-synthetase-2 (LARS2), 
promoting CRC immune evasion, tumour growth 
and progression in a TGF-β1-dependent manner [12]. 
Mechanistically, leucine increases the activity of the 
key transcription factor PAX5 in B-cell development 
and differentiation by promoting LARS2-dependent 
mitochondrial NAD + regeneration and upregulating 
the expression of the deacetylase sirtuin-1 (SIRT1), 
thereby promoting TGF-β1 production [12]. This leads 
to the formation of an immunosuppressive tumour 
microenvironment and tumour immune evasion.

Macrophages
During lipopolysaccharide-induced macrophage acti-
vation, BCAT1 inactivation can induce ROS produc-
tion, which subsequently downregulates the expression 
of the immune-responsive gene 1 protein (IRG1) and 
inhibits the proinflammatory functions of macrophages 
[110, 111]. Furthermore, in GBM cells with high BCAT1 
expression, BCKAs are excreted from cells via mono-
carboxylate transporter 1 (MCT1) and are subsequently 
taken up by tumour-associated macrophages and reami-
dated from BCAAs. BCKAs attenuate the phagocytic 
activity of macrophages, thereby promoting GBM growth 
[39]. Therefore, BCAA metabolism is crucial for main-
taining the function of immune cells.

Clinical and in vivo studies of BCAA supplement 
therapy and metabolic enzyme inhibitors
At present, many clinical studies have reported that 
appropriate supplementation of BCAAs is beneficial for 
improving the prognosis of patients with liver cancer 
[112]. Oral supplementation with BCAA granules can 
reduce the risk of developing liver cancer in patients with 
cirrhosis [113]. Oral BCAA supplementation protects 
liver function and reduces the risk of relapse and com-
plications after radiofrequency ablation of HCC [114]. 
In addition, supplementation with BCAA may serve as 
a useful adjunctive therapy to improve the prognosis of 
patients with advanced HCC treated with sorafenib [115]. 
These methods appear appear to be useful for improving 
the prognosis of patients with HCC because they can be 
applied safely without significant side effects.
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At present, the application of branched-chain amino 
acid inhibitors in tumour therapy is still in the preclinical 
research stage. However, studies have demonstrated 
its potential therapeutic effects through in  vivo 
experiments, laying the foundation for future clinical 
applications. A recent study reported that the small-
molecule drug Eupalinolide B (EB) can act as an inhibitor 
that targets BCAT1 to induce the apoptosis of triple-
negative breast cancer (TNBC) cells both in  vivo and 
in  vitro [116]. In addition, WQQ-345, a novel BCAT1 
inhibitor, has antitumour activity in  vitro and in  vivo 
against TKI-resistant lung cancer with high levels of 
BCAT1 expression [117]. The BCAT2 inhibitor 2-Aryl 
Benzimidazole improves the progression of PDAC in 
mice [118, 119] (Table 3).

Conclusion
Alterations in cellular metabolism can promote cell 
transformation and tumour progression. Metabolic phe-
notypes can also be used to provide prognostic infor-
mation and treat cancer [120]. Therefore, studies on 
tumour metabolism are important for understanding 
the pathogenesis of different tumours and for improv-
ing clinical treatment. The role of BCAAs is not limited 
to their contribution as essential amino acids; they also 
play an important role in the body by providing a source 
of nitrogen and carbon, supporting the synthesis of other 
molecules such as amino acids and nucleotides, and 
maintaining energy balance [59, 121]. In addition, they 
can also act as signalling molecules and influence tumour 
progression by affecting the epigenetic landscape, oxi-
dative stress, drug resistance, and immune responses 
[122–124].

There are significant differences in the degree of 
BCAA metabolic reprogramming across tumour 
types. Numerous factors influence BCAA metabolism, 
including alterations in the expression or activity of 
BCAA transporters and related metabolic enzymes, 

transcription factors, oncogenes and tumour 
suppressor genes; alterations in the tumour phenotype; 
the alterations in the tumour microenvironment 
[125]. Moreover, the type of dysregulation of BCAA 
metabolism appears to differ among various types, as 
it may involve reduced BCAA catabolism, leading to 
BCAA accumulation or enhanced BCAA uptake and 
catabolism [66–68]. This may involve the extent to which 
tumour cells utilize intracellular or circulating BCAAs. 
The current paper summarizes the multiple mechanisms 
by which alterations in BCAA metabolism mediate 
tumorigenesis and discusses potential therapeutic 
targets.

We discussed numerous specific tumour-dependent 
pathways associated with BCAA metabolism, and pro-
vided insight into tumour-specific pathogenesis mecha-
nisms. However, the clinical application of effective 
BCAA metabolism therapies remains limited. One chal-
lenge is the significant heterogeneity of BCAA metab-
olism under different conditions. This requires the 
comprehensive consideration of factors such as tumour 
type, tumour microenvironment features, and tumour 
stage to determine the stage of tumour progression. In 
addition, whether BCAA metabolic reprogramming 
synergizes with other mechanisms to promote tumour 
growth under different circumstances should be studied. 
Given the importance of BCAA metabolic reprogram-
ming in tumour progression, metabolic enzymes involved 
in BCAA metabolism may be potential therapeutic tar-
gets for the treatment of cancers.

Interestingly, cancer stem cells are a distinct 
subpopulation within tumours, that can self-renew and 
differentiae, and they drive tumour migration, therapy 
resistance, and immune evasion [126]. The CSC niche 
is a specific tumour microenvironment composed of 
the extracellular matrix, stromal cells (including cancer-
associated fibroblasts and immune cells), cytokines, 
and growth factors. These components maintain the 
stemness, self-renewal, and cell fate determination of 

Table 3 Clinical and in vivo studies of BCAA supplement therapy and metabolic enzyme inhibitors

Therapy type Drug name Target Efficacy Research type References

Supplemention BCAA supplemention N/A Reduce the risk of liver cancer in patients with cirrhosis Clinical study [112]

Reduce the risk of recurrence and complications in patients 
with HCC after radiofrequency ablation

[113]

Improve the prognosis of patients with advanced HCC [114]

Inhibitor JPH203 LAT1 Inhibit the proliferation of advanced solid tumours 
and improve prognosis

Clinical study [56, 57]

Eupalinolide B BCAT1 Induced TNBC cell apoptosis In vivo/in vitro 
experiments (mouse 
model)

[116]

WQQ-345 BCAT1 Antitumor activity [117]

2-Aryl Benzimidazole BCAT2 Improves the progression of PDAC mice [118, 119]
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CSCs through signalling pathways such as the WNT, 
NOTCH, and BMP pathways [126]. Additionally, 
nutrients, as essential components of the stem cell 
niche, influence stem cell fate and function through 
various mechanisms [127]. Although direct evidence is 
currently lacking that BCAA metabolic reprogramming 
directly regulates the aforementioned signalling pathways 
involved in modulating cancer stem cells, BCAAs and 
their metabolic enzymes can reshape the CSC ecological 
niche of tumour cells by regulating the expression of 
CSC markers such as SOX2, DOT1L, and PRC2, as 
well as modulating immune cell function to impact the 
construction of the CSC niche. Suppression of CSC 
ecological niche by altering BCAA metabolism may be 
an important strategy to prevent tumour recurrence and 
metastasis.

Additionally, immunotherapy, as an emerging and 
promising cancer treatment, has attracted widespread 
attention. In the future, more in-depth research will 
further unveil a broader understanding of the profound 
impacts of BCAA metabolic reprogramming on tumour 
immunity and uncover new methods to enhance tumour 
immunotherapy. This may involve identifying novel 
therapeutic targets, developing more effective treatment 
strategies, and exploring the potential for personalized 
therapy, thereby promoting the start of a new era in can-
cer treatment.
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